AD-A141 575 PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND -PATTERN 1/
ANALYSIS AND RECO..{U) DAVID W TAYLOR NAVAL SHIP
- RESEARCH AND DEVELOPMENT CENTER BET. W PARSONS ET AL,
INCLASSIFIED MAR 84 DTNSRDC/CMLD-84-05

. =

-

; K1l
‘ = u k&g
—— E m ME
s =51
. el S |
L

)

| I

lis e

[
' . . MICROCOPY RESOLUTION TEST CHART
: : NATIONAL BUREAU OF STANDARDS-1963-A
{ -
| ;
:] -
N
t ' -
¢

—
DAVID W. TAYLOR NAVAL SHIP

Bethesda, Maryland 20084

DTNSRDC/CMLD-84/05
s
m
»n
m
>
o o)
O
I
) -
2
w)
o
<
m
F
o)
v
S
m
4
-
@)
m
2
-
m
o v |

-t et A A A

William Parsons

Joseph Garner D I l

James Carlberg

Sidney Berkowitz ELECTE
MAY 29 1984 ~

n

: M~

i L0 PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND
- PATTERN ANALYSIS AND RECOGNITION SYSTEM
< (ISPARS)
F
< by
é

B

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

COMPUTATION, MATHEMATICS, AND LOGISTICS DEPARTMENT
DEPARTMENTAL REPORT

March 1984 DTNSRDC/CMLD~84/05

-)
NDW-DTNSROC 5802/30 i2-80) 8 4 0 5 2 5 0 1 5

{supersedes 3960/48)]

PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND
PATTERN ANALYSIS AND RECOGNITION SYSTEM (ISPARS)

DIIC FILE COPY

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER
TECHNICAL (JIREC'I'OI(Q)1

OFFICER-IN-CHARGE OFFICER-IN-CHARGE
CARDEROCK 05 ANNAPOLIS
SYSTEMS
DEVELOPMENT
DEPARTMENT

SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS
DEPARTMENT

15 L 16

. STRUCTURES COMPUTATION
‘ OEPARTMENT MATHEMATICS AND
" LOGISTICS DEPARTMENT

PROPULSION AND

sglepnggzglfs AUXILIARY SYSTEMS
DEPARTMENT
19
_ SHIP MATERIALS CENTRAL
; ENGINEERING INSTRUMENTATION
! DEPMRTMENT - DEPARTMENT

e e

.-

NOW DTNSRDC 3960 43 (Hey

PR i ek

IINCLASSIFIED
SECUMITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFeEAD INSTRUCTIONS
bt 1. REPORY NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
. DTNSRDC/CMLD-84/05 A__ A. J’-ﬂ
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
PROGRAM DESCRIPTIONS FOR INTERACTIVE Interim Report
SIGNAL AND PATTERN ANALYSIS AND Sep 1979 - Sep 1980
RECOGNITION SYSTEM (ISPARS) 6. PERFORMING ORG. REPORT NUMBER 1
A
7. AUTHORC(s) 8. CONTRACY OR GRANT NUMBER(s)
William Parsons James Carlberg
. Joseph Garner Sidney Berkowitz
S. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
David Taylor Naval Ship Research and
Development Center (See Reverse Side)
Bethesda, Maryland 20084
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Sea Systems Command March 1984
Materials and Mechanics Division 13, NUMBER OF PAGES
Washington, DC 20362 138
4. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
} . 16. OISTRIBUTION STATEMENT (of this Report)
|
E APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)
{
|
B
j i‘ 18. SUPPLEMENTARY NOTES
e |
S i
: i 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 1
. r i
o { Signal Analysis Interactive Graphics i
? . Pattern Recognition Waveform Processing
! ‘ Spectral Analysis
I |
b ’ - " e 20. ABSTRACT (Continue on reverse side If neceseary and identily by block number)
. ‘ ~ The Interactive Signal and Pattern Analysis and Recognition System
P 3 (ISPARS) is an integrated package of interactive graphics software and signal
and pattern analysis programs for visualizing and exploring sampled data ’ .
streams and designing pattern logics. This report contains detailed !
‘ descriptions of the subroutines, files, and linking’ptoceédures for the ISPARS :
. components developed at the David Taylor Naval Ship Research and Development
) Center (DTNSRDC) which are not documented in other DTNSRDC reports.
X

DD %", 1473 eoimion oF 1 NOv 6813 OBsOLETE UNCLASSIFIED \

SECURITY CLASSINIC AT IN OF THIS PAGE (When Deta Bntered)

‘ S/M 01F2.LF.014-660)

UNCLASSIFIED

SECURITY CLASSIFICATION 2F THIS PAGE (When Data Entered)

(Block 10)

Program Element 61153N
Project SR01403

Task Area SR0140301
Work Unit 1808-~010

Accession For

! NTIS (RA&I
DTIT TAB
Unannounced a
Justification ____}
By

| Distribution/ _ ‘
Availability Codog |
" ‘Avail and/or

Dist | Spscial

|

I

- e ou—

o t—

SECURITY CLASSIFICATION OF T 115 B AGE(Whe~ Dars Tnrerad)

LIST OF FIGURES AND TABLE . .
ABSTRACT o & o & & &
ADMINISTRATIVE INFORMATION .
INTRODUCTION

PROGRAM VU . . . + ¢« &« ¢« ¢« &
VU Subroutine Descriptions
VU File Descriptions . . .
VU Linking Procedure . . .

PROGRAM SELECT

TABLE OF

SELECT Subroutine Descri ‘ons .

SELECT File Descriptions .
SELECT Linking Procedure

PROGRAM WAVAN
WAVAN Routine Descriptions
WAVAN File Descriptions . .
WAVAN Linking Procedure . .

REFERENCES « & &

- Subroutine LEV Flowchart

o ~N o0V EW NN =
'

LIST OF

- Subroutine CREAT1 Flowchart .
- Subroutine CREAT2 Flowchart .
- Subroutine FATPK Flowchart . .
-~ Subroutine KINSRT Flowchart .
Subroutine KLASIT Flowchart .
- Subroutine KLOOK Flowchart . .

- Subroutine MRGPK Flowchart . .

9 - Subroutine NARPK Flowchart . .
10 - Subroutine NONLEV Flowchart .

11 - Peak Bandwidth

12 - Subroutine PEAKPK Flowchart .
13 -~ Subroutine PRESS Flowchart . .
14 - Subroutine QVUCSI Flowchart .
15 - Subroutine SEARCH Flowchart .
16 - Subroutines UPDAT and UPDAT2

CONTENTS

Flowcharts .

15
19
22
25
31
34
37
41
45
u7
52
58
62
66

Page
Relative Ages of UPDAT and UPDAT2 Parameters
18 -~ Subroutine WAMSER Flowchart . . . ¢ ¢ ¢« & ¢ o ¢ o ¢ o o o ¢ ¢ o o o 72
19 - BATCH File to Link VU . . ¢ v ¢ ¢ ¢ ¢ ¢ o o o o o o o ¢« s s s o« o« « 18
20 - Subroutine SETF3 Flowchart « . o « ¢ v ¢ ¢ ¢« o o o o s ¢ o s o s « « 105
21 = Program SELECT Linking Procedure . . . « ¢« 4 4 &+ ¢ o o o ¢ o o o « o 112
22 - Subroutine TEST Flowchart . . . ¢ ¢ & ¢ ¢ ¢ ¢ ¢ s ¢ o ¢« s ¢ s ¢ ¢« 119
23 - WAVAN Linking Procedure . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o s o o ¢ o« & 132

TABLE D1 - SELECT COmmandS ¢« o LI] . . e 5 & & 2 & 6 e e * O s o 0+ o - 82

U Y

ABSTRACT

The Interactive Signal and Pattern Analysis and

Recognition System (ISPARS) is an integrated package of
interactive graphics software and signal and pattern
analysis programs for visualizing and exploring sampled data

o streams and designing pattern logics. This report contains
detailed descriptions of the subroutines, files, and linking
procedures for the ISPARS components developed at the David

. Taylor Naval Ship Research and Development Center (DTNSRDC)
which are not documented in other DTNSRDC reports.

ADMINISTRATIVE INFORMATION
This work was completed in the Computer Science and Information Systems
E Division of the Computation, Mathematics, and Logistics Department under the
sponsorship of NAVSEA O3F, Task Area SR 0140301, Task 15321, Element 61153N.

INTRODUCTION

The Interactive Signal and Pattern Analysis and Recognition System
(ISPARS) is an integrated package of interactive graphics software and signal
; and pattern analysis programs for visualizing and exploring sampled data
' streams and designing pattern logics. An ISPARS User's Guideli presents the
conceptual descriptions and functional guide to the system. This report is a
companion to the User's Guide and contains detailed descriptions of the sub-
routines, files, and linking procedures for the ISPARS components developed at
the David Taylor Naval Ship Reserach and Development Center (DTNSRDC), which
are not documented in other DTNSRDC reports.

ISPARS deals with two areas of data analysis: The processing of sampled |
signal waveforms and the determination of pattern classes into which waveforms t
é may be separated. Signal analysis encompasses segmentation, spectral decompo-
. sition, filtering, normalization, and characterization of signals, It
: provides insight into the physical sources of signal components and the identi-
4 fication and extraction of significant features in the signal. The pattern

analysis procedures enhance the understanding of pattern relationships and
{oe permits the construction of classification criteria for recognition schemes.

¢ ISPARS integrates these analysis techniques into a set of interactive graphics

o ® A complete 1list of references is given on page 133.

programs which provide convenient, flexible means of visualizing, exploring,
and analyzing a sampled data stream controlled through a simple, concise
command language.

This report is divided into three main sections corresponding to three
subsystems of ISPARS: VU, SELECT, and WAVAN, Each contains program
descriptions, file descriptions, and the linking procedure used in program
development. The remaining subsystems and components of ISPARS are documented

in other reports.2'3'u

PROGRAM VU

VU is an interactive, general purpose program for the examination and
analysis of digitized signals. VU runs on a PDP 11/45 minicomputer system
with a VT11 processor supported by the RT-11 operating system. Digitized data
are stored on disk or magnetic tape as an infinite data stream, and a graphics
display monitor is used to show results of analyses, spectral decomposition,
peak~picking, and smoothing. A functional description of VU and its command
language is contained in the ISPARS User's Guide1. This section presents, in
alphabetical order by subroutine name, the subroutine descriptions, input/

output, files, and linking procedures associated with program VU.

i

i e - P
e e e s

e e - A e

.. w
— ey —— -

~.

~

U SE—

»

- . ————

VU SUBROUTINE DESCRIPTIONS

SUBROUTINE NAME ADJUST

PURPOSE To display and alter parameter values for VU,

DESCRIPTION

INPUT

OUTPUT

CALLED BY vu GRAPHICS? Yes
SUBROUTINES CALLED AJ 1SUB DISK I/0? Yes
CALLING SEQUENCE CALL ADJUST [DPO:OPARAM.DAT]

SUBROUTINE NAME AJ1SUB
PURPOSE To display parameters for ADJUST,

DESCRIPTION

INPUT

OUTPUT

CALLED BY ADJUST GRAPHICS? Yes
SUBROUTINES CALLED None DISK I/0? No

CALLING SEQUENCE CALL AJ1SUB (AMPMIN, SFREQ, LOGPOW, AMPBEG, BAND, PERHI,

PERLO)

SUBROUTINE NAME BESSEL
PURPOSE To calculate a modified Bessel function.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POCALC GRAPHICS? No
SUBROUTINES CALLED None DISK I/0? No

CALLING SEQUENCE CALL BESSEL (XUA-UUE, ZSUM)

e e o e e

—fs
-/ T A ey % P
.) SR PAEC 4 -

PR |

ot

[,

)
!

SUBROUTINE NAME CHANGE

PURPOSE To change KLASIT parameters.
DESCRIPTION CHANGE is a FORTRAN subroutine which receives a change parameter

command and new value as arguments and changes the specified parameter value
contained in common block/PARAMS/. CHANGE also displays the new parameter
value and erases all displays associated with the parameter before returning to

the calling program,

INPUT
Arguments
CMAND 3 - first letter of command. Valid letters are "N", "L", "I", "P",
and "Q".
NUM3 - second character of command; will be a number 1, 2, or 3
referring to parameter set 1, 2, or 3.
ZNUM3 - new floating point value of specified parameter
QUTPUT New parameter value displayed along with other parameters in its

parameter set.

CALLED BY KLOCK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL CHANGE (CMAND3, NUM3, ZNUM3)

SUBROUTINE NAME CHINFO
PURPOSE To obtain channel information from the user and supply it to VU.

DESCRIPTION

INPUT

OUTPUT

CALLED BY vu GRAPHICS? No
SUBROUTINES CALLED SHOUT DISK I/0? No

CALLING SEQUENCE CALL CHINFO (ICHAN, OCHAN, NCHAN, ZLASL, FILSIZ, CMAND1)

SUBROUTINE NAME CREAT1

PURPOSE To calculate the unsmoothed noise from the results of applying
KLASIT to the original data.
DESCRIPTION Subroutine CREAT1 obtains an estimate of the noise contained in
the original data by examining the results of the first application of sub-
routine KLASIT to the original data. The rise, level, and fall forms generated
by KLASIT are contained on disk file DPO:UNSMOO.DAT. The out . array RUFF is
filled in with a constant noise level associated with each f ., with the
index to RUFF beginning at the start time for the form and r ing up to (but
not including) the start time for the next form. A zero noi . associated
with all level forms and any rise or fall with durations excecuing Q1 points
where Q1 and QO are input parameters. For short rises or falls of duration
less than QO, the noise is taken to be the entire absolute change in level,
For durations between Q0 and Q1 the noise is a percentage ((Ql-duration)
divided by (Q1-Q0)) of the change in level. The flowchart for CREAT1 is shown
in Figure 1,
INPUT
i Arguments
' Q0, Q1 - duration parameters Q0<Q1

Disk

DPO:UNSMOO.DAT - file containing KLASIT approximation to original data

OUTPUT

!
]

¥ Arguments
'

RUFF - 1024-point array containing the unsmoothed noise estimate
CALLED BY KLOOK
) SUBROUTINES CALLED None
;} ¢ CALLING SEQUENCE CALL CREAT1 (RUFF, QO0, Q1)

P

!

ASSIGN INPUT FILE 1
T0 DPOT4NSMOD.DAT

i |

1 READ # FORMS
ON FILE

j .

READ INITIAL
FORM

f i)

READ NEXT FORM:
T=DURATION OF FORM
S=0IF IN LEVELS

l IVALYE VALUE IVALUE a WVALUE=
=0 =0 =d (AL é+5
] i R

[PPSR,

FROM BEGIN OF FORM 10
THE TIME OF ONE BEFORE
THE END SET
RUFAI=IVALUE

e w4 e A——— ~ e

} . YES
1
r C o)

it Figure 1 - Subroutine CREAT1 Flowchart

i 4

e

—— - —.

SUBROUTINE NAME CREAT2

PURPOSE To construct the noise array from the smoothed estimate of the
noise.
DESCRIPTION Subroutine CREAT2 examines the smoothed estimate of the noise
produced by KLASIT on file DPO:SMOO.DAT and computes a final estimate of the
noise array. For all points contained in a level form, the noise is set to
one-half the magnitude of the level, For points in a rise or fall the noise
is obtained from a straight line interpolation between the levels divided by
two. The division by two is to account for positive and negative values. The
flowchart for CREAT2 is shown in Figure 2.
INPUT

Disk

DPO:SMOO.DAT - file containing KLASIT approximation to unsmoothed noise

estimate
OUTPUT
Arguments
NOISE - A 1024-word array contining final smoothed estimate of noise
contained in original data
MXSMOO - twice maximum value of noise array

Printout: Noise array and MXSMOO
CALLED BY KLOOK
SUBROUTINES CALLED None
CALLING SEQUENCE CALL CREAT2 (NOISE, MXSMOO)

SUBROUTINE NAME DISKRD
PURPOSE To fill ARRAY with data from a specified disk file.
DESCRIPTION

INPUT
OUTPUT
CALLED BY (KLOOK, VU, SEARCH) GRAPHICS? No
SUBROUTINES CALLED REEDTR DISK I/0? Yes

(DPO:TRAKS2.DAT]
CALLING SEQUENCE CALL DISKRD (ARRAY, TRKNUM, CMANDY4, NUM4, ZNUMY)

e A e ———

GET NEXT {OR 1ST} FORM
FROM FILE

\EVEL Woﬂfm

ASSIGN END VALUE OF FOR INTERMEDIATE PTS
LEVEL TO NOISE ASSIGN A LINEAR INTERPOLATIM

LEVEL OF ALL PTS IN OF VALUES FROM START LEVEL
LEVEL TO END LEVEL

YES

OIVIDE NOISE BY 2
TO ACCOUNT FOR POS.
AND NEG. VALUES

'

CLOSE INPUT FILE

TYPE OUT NOSSE

Figure 2 - Subroutine CREAT2 Flowchart

SUBROUTINE NAME DSPIT1

PURPOSE To display the unsmoothed noise array.

DESCRIPTION DSPIT1 calls subroutiné NEWVEC in creating a subpicture display
of the unsmoothed noise array which it receives as an input argument. The
subpicture is turned on and a copy of the subpicture is made to be displayed
at a higher point on the screen should the "merge" command be given to KLOOK.
Finally, DSPIT1 will turn off the unsmoothed noise display if the last command
given is a D3 or any non "D" command. The final status of the unsmoothed

noise display and its copy are returned in variables BRUFF and TRUFF of common
/DCHEK/.

INPUT

Arguments

E RUFF - a maximum 1024-point array containing the unsmoothed noise data
ILNTH - length of RUFF
Common
/CMNDS/
CMAND3 - 1st character of last user command
. NUM3 - 2nd character of last user command
/SCALE/
ZR ~ small factor
QUTPUT

Common :

/DCHEK/ BRUFF, TRUFF - status variables of unsmoothed noise display and

its merge copy

PR

CALLED BY KLOOK
SUBROUTINES CALLED NEWVEC
CALLING SEQUENCE CALL DSPIT1 (RUFF, LNTH)

e

i
!
;
‘

-

o v
e et e A A Bl o e A
P . e

1
- -

e

!
F
{
t
{
I
|
!
1
|
|

SUBROUTINE DSPIT2
PURPOSE To display the smoothed noise.
DESCRIPTION DSPIT2 reads from disk the results of subroutine KLASIT

operating on the unsmoothed noise (sequence of rise, level, and fall waveforms

referred to as the smoothed noise). By computing y-differences and cycling
through calls to subroutine NEWVEC, DSPIT2 generates a subpicture display of
the unsmoothed noise which is placed in the top part of the screen and
assigned the status variable and tag TSMOO. Before returning, the smoothed
noise display is turned off unless the last user command was "D2",
INPUT
Disk
DPO:SMOO.LAT ~ FORTRAN direct access file containing up to 1024 records of
three words each where each record represents a waveform
approximation by KLASIT. Each triplet consists of form,
start point, and amplitude value.
The number of forms is contained in the only word stored in record 1024.
Common
/ CMNDS/
CMAND3 =~ 1st character of user command
NUM3 - 2nd character of user command
QUTPUT
Common
/DCHEK/TSMOO -~ status variable of smoothed noise display
CALLED BY KLOOK
SUBROUTINES CALLED NEWVEC
CALLING SEQUENCE CALL DSPIT2

10

SUBROUTINE NAME DSPIT3

PURPOSE To display the final smoothed approximation to the original data
DISCRIPTION DSPIT3 reads from disk file DPO:FINAL.DAT the final KLASIT
results consisting of the smoothed approximation to the original data. DSPIT3

reads the KLASIT waveform sequence, computes x and y differences, and calls
NEWVEC to generate the (error corrected) subpicture display. The picture is
turned on and assigned the tag and status variable, BFINL. In anticipation of
the "merge™ user command, a copy of the subpicture is made but not displayed
and assigned the tag, TFINL. The picture is left "on" unless the last user
command was W or X.
INPUT

Disk

DPO:FINAL.DAT - A FORTRAN direct access file with 1024 records; last

record is number of forms and other records are triplets
consisting of form, start point, and value.

Common

/CMNDS/

CMAND3 - 1st character of user command

NUM3 - 2nd character of user command
QUTPUT

Common

/DCHEK/

BFINL and TFINL status variables of final smoothed approximations display
and its copy, respectively.
CALLED BY KLOOK
SUBROUTINES CALLED NEWVEC

CALLING SEQUENCE CALL DSPIT3

|

*

R

<

. =

.

- e e e
DR e P L S e .

——— e e

~

SUBROUTINE NAME DSPRAW

PURPOSE To display the original data.

DESCRIPTION

INPUT

OUTPUT

CALLED BY XLOOK, VU GRAPHICS? Yes
SUBROUTINES CALLED None DISK 1/0? No
CALLING SEQUENCE CALL DSPRAW (ARRAY, TRKNUM)

SUBROUTINE NAME DTRMIN
PURPOSE To determine what command (in the smoothing control routine, KLOOK)

w1ll produce the current display.
DESCRIPTION DTRMIN is a FORTRAN routine that checks the status of sub-
pictures that can be displayed under control of subroutine KLOOK. Each sub-
picture is associated with a variable in the /DNAMES/ common block. DTRMIN
tests the variables for those that are in the "on" status and returns with
CMANDQ and NUNQ arguments set to the characters that would generate the
displays that are currently "on",
INPUT Common /DNAMES/ display state variables for subpicture
OUTPUT

Arguments

CMANDQ -~ The letter ("w", "X", or "D") which will generate the proper

display in KLOOK

NUMQ - The accompanying number (1, 2, or 3) completing the command
CALLED BY KLOOK
SUBROUTINES CALLED None
CALLING SEQUENCE CALL DTRMIN (CMANDQ, NUMQ)

SUBROUTINE NAME FATPK

PURPOSE To determine whether a peak found by PEAKPK is too broad.
DESCRIPTION The particular peak which this routine examines is located at

LMAX, and the surrounding minimums are at LASMIN and LMIN (with LASMIN <
LMIN). The flowchart for FATPK is shown in Figure 3,

Starting at LASMIN and heading to the right toward LMAX, set Lt = the
first location (frequency bin) which satisfies one of the following two
conditions:

(a) the amplitude at this location exceeds

PERHI # (amplitude at the peak)
or

(b) the amplitude at the location exceeds

PERLO * (amplitude at the peak)
and

{(amplitude at this location)
(amplitude at previous frequency bin)

> FACTOR

Note that (a) is a simple amplitude requirement, while (b) has a less
restrictive amplitude requirement (since PERLO < PERH1) but adds a condition
on the slope or the speed at which the maximum is approached.

If this peak must be split into two peaks, L1 will be the location of the
leftmost peak. To locate the peak on the right, start at LMIN and travel to
the left toward LMAX; set L2 = the first location satisfying (a) or (b) above.

Having determined the "beginning" (L1) and the "end" (L2) of this peak,
compare the width L2-L1+1 with the width needed for a broad peak (ZBROAD). If
the peak is broad (>ZBROAD), set SPLIT = .TRUE.; otherwise SPLIT = .FALSE.

Return.

CALLED BY PEAKPK ’

SUBROUTINE NAME FATPK (Cont'd)

INPUT
Arguments
ZSPEC - power spectrum array
TPTS - # points in power spectrum
L - current frequency location index
LMAX - location of last minimum
LASMIN - last value of LMIN
OUTPUT
Arguments
L1
- estimated locations of the two peaks into which a "fat peak" should
be split
L2

SPLIT - flag set to .TRUE. if the peak in question is too broad

SUBROUTINES CALLED None

CALLING SEQUENCE CALL FATPK (ZSPEC, TPTS, L, LASMIN, LMAX, LMIN, SPLIT, L1,

L2, PERHI, PERLO, FACTOR, ZBROAD)

14

'r FATPK
|
FIND BEGIN- {PERHI, PERLB,
: NING OF HHHURAREhég?
PEAK; CALL IT IN DETERMING
u L1 AND (2)
FIND END OF
PEAK; CALL IT
2
; SET WiDTH=
L2-L141
K
K WOTH ad
. WIDE =
.I ENoeH SPUT=FALSE
A e
oot
4
)
i
:L

Figure 3 - Subroutine FATPK Flowchart

<

15
|
A
| s -
;! UL S - e

SUBROUTINE NAME FFTDSP
PURPOSE To calculate and display the real and imaginary parts of the FFT,

DESCRIPTION

INPUT

OUTPUT #
CALLED BY Vu GRAPHICS? Yes i
SUBROUTINES CALLED FOUREA DISK 1I/0? No

CALLING SEQUENCE CALL FFTDSP

SUBROUTINE NAME FILLIT
PURPQSE To fill ARRAY with P150PY points from a specified disk file
starting at the point (in the disk file) designated ZFILEP,

DESCRIPTION

INPUT

CALLED BY LOCATE GRAPHICS? No
SUBROUTINES CALLED None DISK 1/0? Yes

[User's data file]
CALLING SEQUENCE CALL FILLIT (ICHAN, XFILEP, INCRE, ARRAY)

i SUBROUTINE NAME FOUREA [in FOUREA1, MAC]
i PURPOSE FOUREA is the Fast Fourier Transform (FFT) routine.

- DESCRIPTION

i Ineur

. OUTPUT

k ?{ CALLED BY FFTDSP, POCALC GRAPHICS? No
: SUBROUTINES CALLED None DISK I/0? No
! CALLING SEQUENCE k
] y

SUBROUTINE NAME KCMNDS

PURPOSE To operate in conjunction with KLOOK to handle KLASIT level user
commands.

DESCRIPTION KCMNDS is a FORTRAN subroutine which turns on, turns off,
erases, and checks status of displays specifically associated with the

smoothing operations on input data. KCMNDS is called by subroutine KLOOK for
the "D", "W", and "M" commands and all forms thereof. KCMNDS checks the
current display status and turns on the requested displays if they are not
already on or turns them off if they are already on. If the subpicture
associated with a requested display does not exist in the display, KCMNDS
returns to KLOOK with the control parameter LINE set appropriately to direct
KLOOK to call the necessary level of the smoothing process to generate the
required display. To direct KLOOK properly, KCMNDS determines the present

state of the display by checking the status of the subpictures and erasing
undesired displays and displays that must be regenerated.
INPUT
Arguments
CMAND3 - First character of input command
NUM3 ~ Number following first character of the user command input
Common 1
/DNAMES/ - list of graphics tags assigned to each subpicture (integers
running from 1 to 20)
/DSTAT/ - contains display status array, DCHEK, which records status of
each subpicture (on, off, erased)
OUTPUT
Argument 3
LINE- integer variable containing values from one to eight to indicate
branches in KLOOK control structure, Direct KLOOK to various stages i
of smoothing process,
Common
/DNAMES/ c¢f. INPUT
/DSTAT/ cf. INPUT
CALLED BY KLOOK
SUBROUTINES CALLED PRAMTR
CALLING SEQUENCE CALL KCMNDS (CMAND3, NUM3, LINE)

17

SUBROUTINE NAME KINSRT

PURPOSE This routine places a new form into the KLASIT output file (after
determining that the form being output is not a duplicate).

DESCRIPTION If the form is the first one (INDEX = 0), KINSRT increases
INDEX to 1, sets the 3rd column (KCOL3) equal to the amplitude at the position
indicated by the second column (KCOL2), and returns.

If the form is not the first, KTEST is examined to see if it will be
necessary to check for a duplicate entry. If KTEST = .TRUE., this form is
compared with the previous form, and if they are the same a return is made
without increasing INDEX by 1. If KTEST = ,FALSE, (which happens only on the
first and last two forms), no check is made.

After surviving the duplication check, the form is definitely going to be
entered into the output, so INDEX is increased by 1. If the form is a level,
it is entered directly into the output, and the previous form is changed so
that the third column (the value at the endpoint of the last form) is set to
the value of the level, (This modification makes certain that the levels are
truly flat and not slightly inclined.) If the form is a rise or fall, the
third column is changed by setting it equal to the value at the endpoint
(KCOL3 = S(KCOL2)), and then the form is output.

The flowchart for KINSRT is shown in Figure 4,

INPUT
Arguments
S -~ original data, possibly modified by routine NAROPK; and array

dimensioned 1024
INDEX - # of forms already on output file

KCOL1 = first number of form = +1 for rise, -1 fpr fall, 0 for level
KCOL2 - second number of form = endpoint of rise, level, or fall
KCOL3 -~ last number of form = value at endpoint

KTEST - If KTEST = ,TRUE., KINSRT will test to see if a duplicate form is
about to be entered.
OUTPUT (DISK) A new entry is sometimes placed on the direct-access file 79
(which may be DPO:UNSMOO.DAT, DPO:;SMOO,DAT, or DPO:FINAL.DAT).
CALLED BY KLASIT, LEV, NONLEV
SUBROUTINES CALLED None
CALLING SEQUENCE CALL KINSRT (S, INDEX, KCOL1, KCOL2, KCOL3, KTEST)

18

x

———— g — = -

~.

N

WITH THIS ONE

BY ONE

YES

533
32
Y
HE
a!ia!

3
Fd

1
g

—(=)

Figure 4 - Subroutine KINSRT Flowchart

19

SUBROUTINE NAME KLASIT

PURPOSE To characterize a time series of digital data by a sequence of
elementary waveforms consisting of rises, falls, and levels.

DESCRIPTION KLASIT reads a series of as many as 1024 values from disk, ini-
tializes variables, and cycles through subroutines LEV, NONLEV, NAROPK, and
KINSRT to approximate the input data with a sequence of rise, fall, or level
waveforms. Each waveform is described by a number triplet and is stored on
disk by KINSRT in the order of occurrence. The first number of the triplet is
-1, 0, or +1 for fall, level, or rise, respectively. The second number is the
index in the original data of the endpoint of the form, and the third number
is zero for rise or fall or, for a level, the amplitude of the level, KLASIT
works through the raw data input by calling LEV or NONLEV, depending on the
possibility of a level form existing at the current data index. Special proc-
essing, in the form of a call to NAROPK, is performed to ensure the validity
of rises or falls occurring at the end of data.

KLASIT maintains a list in COMMON/PRAMI/ of the variables characterizing
the current state of the processed data. These are key values associated with
the current waveform indicating its type, bounds, and level, As new forms are
encountered, KLASIT maintains a history of the parameter sets for each of the
two forms preceding the current form through calls to UPDATE and UPDAT2. This
history allows the waveform approximation routines, specifically NAROPK, to
eliminate forms and to BACKTRACT and reprocess data to achieve smoother
approximations to the input data. The KLASIT flowchart is shown in Figure 5.
INPUT

Arguments

LENGTH - length of the input data

S - input data vector

NABR -~ vector threshold for level

LEVEL - duration threshold for level

IBAND - constant threshold for significant change in level

P - narrow peak threshold

WHICH1 - parameter indicating the file which is to receive output forms

1. DPO:UNSMOO,.DAT
2. DPO:SMOO.DAT
3. DPO:FINAL.DAT

20

SUBROUTINE NAME KLASIT (Cont'd)

OUTPUT
DISK
DPO:KLSINP.DAT -~ contains LENGTH and S as they are input to KLASIT
DPO:UNSMOO. DAT -
DPO:SMOO, DAT as irdicated by input parameter WHICH1

DPO:FINAL.DAT - contains output sequence of waveforms (a FORTRAN direct-
access file containing 1024 three-word records. Record
1024 contains only the number of forms on file)
CALLED BY KLOOK
SUBROUTINES CALLED KINSRT, UPDAT, UPDAT2, LEV, NONLEV, NAROPK
CALLING SEQUENCE CALL KLASIT (LENGTH, S, NABR, LEVEL, IBAND, P, WHICH1.)

21

KLASIT

‘ -
NTALZE
VARIBLES
AND DEFINE
OUTPUT FRE .
E UPDAT:
;r UPDAT?
t
' PUT ORIGINAL
E‘ ARRAY ON - mug; °
5. DISK 70 SAVE -
: T WORK =
v WITH A COPY =t
i UPBAT2 570
PLACE LAST (o5t
OUTPUT ANO
oone? = o D | ! READ ORIGRAL
A oUTRUT ARRAY BACK
N
NO
RETURN
!
i
“
i
i
i
“
ot
i
|
N
t
|
’ .
i
§
|
P Figure 5 - Subroutine KLASIT Flowchart
)/‘ i
| 22

PRENINE % - N R RS-

SUBROUTINE NAME KLOOK

PURPOSE To control KLASIT smoothing process and associated displays.
DESCRIPTION The FORTRAN subroutine, KLOOK, is the main control routine for
the KLASIT smoothing process and related display routines. The user has the

option of examining either the original (raw) data or a particular track
created by the tracking routines of SELECT. KLOOK accepts all KLASIT commands
through calls to QVUCSI and directs program flow accordingly. KLOOK accepts
the same data movement commands ("F", "B", wjgn, ngn_ and "<CR>") as does VU
and moves all displays that are currently on the screen as directed. In
addition, the "Q7" and "G" commands in KLOOK have the same effect as they do
in VU, The commands peculiar to KLOOK are the "Pn", "Ln", "In", "Nn", and
"Qn" comamnds for changing KLASIT parameters and the "Dn" and "Wn" commands
for displaying various stages and combinations of raw data, noise, and
smoothed signals. All commands eventually cause KLOOK to cycle back to the
call to QVUCSI and look for further commands -~ the "E" and "K" commands being
the means of escaping the KLASIT smoothing module.

When parameters are changed, DTRMIN is called to determine what data are
currently displayed and KCMNDS is called to turn off all displays but the
original data and set the KLOOK control parameter, LINE, to one or two as
needed to effect the proper regeneration of the displays affected by the
parameter change.

If a "D" or "W" type command is entered, KCMNDS is called to turn on the
requested displays. If the displays exist, KCMNDS returns to KLOOK and KLOOK
looks for the next command. If the displays don't exist, KCMNDS returns with
the LINE parameter set appropriately to generate the requested displays and
KLOOK transfers accordingly. As outlined in the flowchart in Figure 6, KLOOK
can cycle through the entire smoothing process including smoothing the raw
data using constant noise, computing unsmoothed noise, smoothing the noise,
and computing a smoothed signal based on the smoothed noise. KLCOK also
affords the only entry to WAMSER which itself is the final process in the

smoothing sequence. See Figure 6 for flowchart of KLOOK,

SUBROUTINE NAME KLOOK (Cont'd)

INPUT
Common
/ARRAYS/ARRAY (1024) - original (raw) data
Keyboard

TRKNUM -~ if equal zero, then examine raw data, otherwise, this is the
number of the track that will be smoothed.
OUTPUT None
(Much of the input/output associated with KLOOK is effected by subroutines
called by KLOOK. For eiample, QVUCSI accepts all commands for KLOOK and
several display routines generate output.)
CALLED BY vu
SUBROUTINES CALLED CHANGE, CORDSP, CREAT1, CREAT2, DISKRD, DSPIT1, DSPITZ2,
DSPIT3, DSPRAW, DTRMIN, KCMNDS, KLASIT, PDATA, QVUCSI, TYPEIT, WAMDSP, WAMSER,
XYPLOT
CALLING SEQUENCE CALL KLOOK (PDRAW)

XLOOK

¥

ERASE, FFT b POWER
SPECTRUM

¥

SAVE R PISOPY INUM
b ZLiAST

INPUT TRACK ® (8
JERQO FOR RAW
DATA

CALL PDATA SET

PARAMS TOR TRACK
OR RAW DATA

JRACK # - O TRACK oy o

RAW DATA!

N

ERASE RAW DATA

CMAND - §

¥

ERASE ALl SUBP ;
EXCEPT RAW DATA

DISPLAY ORI, DATA
W NOT ALREADY DN

TRACK # ¢)

ERASE TRACK DISPLAY

RESTORE ORIG SCALE b

ZR PTSOP E1C DISKRD
ORG DATA

DXSPLAY ORIG DATA

! Figure 6 - Subroutine KLOOK Flowchart (1 of 3)
i
|

a 25

S
> e S

<] .
I - .

Figure 6 - Subroutine KLOOK Flowchart (2 of 3)

26

CALL CORDSP
ESTMATE ROISE WITHOUT -
KLASIT & m:uv] %vm
R PARAMETERS & ERASE ALL
DISPLAYS DEP ON THAT PARAMETER

RESET
CMANDI &
NUM3 T0 YALUES
BEFORE CALL TO
CHANGE

Figure 6 - Subroutine KLOOK Flowchart (3 of 3)

27

A ot . . y - —— - .. em——

SUBROUTINE NAME KLOUT (KLAS, INDEX)
PURPOSE To output WAMSER results to a disk file for use by the waveform

processor.

DESCRIPTION
INPUT)
OUTPUT
] CALLED BY None CALLS None GRAPHICS? No .
‘ currently DISK 1/0? Yes
SUBROUTINES CALLED (User-specified output

CALLING SEQUENCE filel

P P
Bt U N

SUBROUTINE NAME LEV

PURPOSE To test for the existence of a level form and compute its average

value and endpoints.

DESCRIPTION Subroutine LEV tests successive elements of the input array

FTEMP until a value differs from the value of the start of the level by more
than NABR(L), thus signalling the end of the level. If the level width fails
to exceed the parameter LEVEL, no level is found and a return is made to
process the data as a rise or fall., If the width condition is satisfied, the
average value of the level is computed using the original data array, S. The
value of the pointer LB to the end of the preceding form is moved to LB1, and
LB itself is updated to the start point of this level (L-1) or to the first
element in S equal to the average value of the level, whichever comes first.
Subroutine NAROPK is called to eliminate narrow peaks if one has just been
created, and KINSRT is called to place the level data on disk. The flowchart
for subroutine LEV is shown in Figure 7.
INPUT

Arguments

LENGTH - Length of input array to be smoothed

S - 1024-word array containing data to be smoothed

FTEMP - 1024-word array copy of S. This array is analyzed by LEV.
(FTEMP contains smoothing modifications. S is never altered to
allow the program to restore analysis to pre-existing states.)

NABR - 1024-word vector threshold specifying minimum amplitude change
for end of level test

LEVEL - Threshold for minimal width of a level (in number of points)

Common /PRAM1/

L - current pointer to waveform data

29

SUBROUTINE NAME LEV (Cont'd)

OUTPUT

i Arguments:
F MGO -~ status indicator dictating further processing in KLASIT

= 0 means a narrow peak was eliminated and L is currently pointing to
5 a rise or fall
= 1 means level must be absorbed into preceding form <
= 2 means end of waveform data - enter last two forms in KLAS
f = 3 means a sharp rise after the level at end of waveform data
% = 4 means end of data and enter last form in KLAS
? Common /PRAM1/
i L - points to beginning of next form in data
| CALLED BY KLASIT
SUBROUTINES CALLED UPDAT2, NAROPK, KINSRT
. ' CALLING SEQUENCE CALL LEV (LENGTH, S, FTEMP, NABR, LEVEL, IBAND, P, KLAS,
INDEX, MGO)

30

MAKE FTEMP
mﬁvﬁm ARRAY RAT: CALL UPOAT? TO
lev [R > FIEML = UPDATE “A" AND B~
=1+ FTEMPIL- 1) PARAMETERS
1

1S |DWF; > COMPARE INCREASE
NABA(LY? ENO FTEMP) WITH |t prild

OF LEVEL? FTEMPMLB} NIIDD:I

IS LEVEL
LONG ENOUGHE

1S WD >
LEVEL?

SET K8 =
AVERAGE VALUE
OF THIS LEVEL

T

UPQATE (8 10
L-10R TO THE
FIRST | SUCKH
THAT Sl = KB

CALL NAROPK
TO CHECK FOR
NARROW PEAK

—
1]

RETURN 10
LEVEL AFTER
ELIMINATING
PEAK?

NARROW
PEAK
ELIMINATED?

RETURN

CALL KINSRT TO
PLACt PRECEDING
RISE OR FALL INTO
OuTPUT

CALL UPDAT 10
UPDATE "P" AND 0"
PARAMETERS

!

e CALL KINSAT T !
= f———=(PLACE THS LEVEL i
(MAX =L -1 l
TWEST =0 INTQ OuTPUT :

Figure 7 - Subroutine LEV Flowchart

31

pr—— Y

SUBROUTINE NAME LOCATE (ZEVBEG, ZEVEND, ZDURAT)

PURPOSE To locate the beginnings and ends of events.

DESCRIPTION

INPUT

OUTPUT

CALLED BY vu CALLS FILLIT GRAPHICS? No
SUBROUTINES CALLED DISK I/0? Yes
CALLING SEQUENCE [DPO:OPDRAM,DAT]

SUBROUTINE NAME MRGEPK

PURPOSE To merge peaks in PEAKPK if necessary.

DESCRIPTION This routine examines the peak numbered KP. From the output

array, the locations of this peak and the previous peak (number KP-1) are
determined. If the difference in frequency between these two locations is
greater than FMERGE, the peaks are too far away from each other to be merged
and a return is made,

If (on the other hand) the peaks are close enough together, they will be

merged provided their amplitudes are not too similar. The condition imposed

on the amplitudes is that the ratio of the smaller amplitude to the larger
amplitude must be less than HMERGE before a merge will be performed., If this
condition is not satisfied, a return is made.

If all conditions for a merge are satisfied, the location of the last peak
entered is given as the location of the taller peak, and the bandwidth is
equal to the sum of the original two. Before returning, the peak number (KP)
is reduced by one. The flowchart for MRGEPK is shown in Figure 8.

INPUT (Calling Sequence)

ZSPEC -~ power spectrum array

TPTS - # points in power spectrum

TMPOUT -~ output array containing peaks and bandwidths

KP - current peak number

FMERGE -~ if two peaks are separated by more than FMERGE hertz, they canrot

be merged

HMERGE - two candidates for merging are merged if the height of one is

less than HMERGE percent of the other

(DISK) -

OUTPUT (Calling Sequence)
KP - peak number is reduced by one if merge occurs
(DISK) =-

CALLED BY PEAKPK CALLS None

SUBROUTINES CALLED
CALLING SEQUENCE CALL MRGEPK (ZSPEC, TMPOUT, TPTS, KP, FMERGE, HMERGE)

ARE

THE PEAKS

SEPARATED BY =
FME

RGE
HERTZ?

TAKE RATIO
OF SMALLER
AMPLITUDE
T0 THE
LARGER

Figure 8 - Subroutine MRGEPK Flowchart

34

- . . w
e e e ha o~ o e~ e . aa e

t

T T T

SUBROUTINE NAME NAROPK

PURPOSE To eliminate narrow peaks as part of KLASIT's smoothing process.
DESCRIPTION The routine begins by setting the default condition T=0,
meaning that no narrow peak was eliminated. The variable T can take on two
other values to tell the calling program what it has done: if T=z1, a narrow
peak was eliminated and the sample point under consideration is on a rise or a
fall; if T=2, a narrow peak was eliminated and the sample point now under
consideration is on a level.

A check is then made to see if a peak is really available for examination
~- this check is made by multiplying the form types (ITEST) for the current J
form and the previous form to see if the result is -1; if it is not, one of
them is a level, or both are rises, or both are falls.

Once it is determined that the peak is there, the beginning (the endpoint
of the last form), the end (LB1), and the width (end-beginning-1) are
determined. If the width is >P, the peak is not narrow and a return to the
calling routine is made; otherwise the routine continues.

If the peak is narrow, it is eliminated by obtaining amplitude values at
the beginning and end of the peak and replacing the intermediate values by a
straight-line interpolation between the endpoints. The results are placed in
both FTEMP (the working array) and S (the original data). [Note: If S were
not changed, calculations of the average level value in the routine LEV would
be thrown off, since the S array is used here.]

After zeroing out the last form entered into the output file (which may
not be necessary any more), the routine resets L (current sample point) to a
point just before the peak began (L = BEGPK-1) and reduces the value of INDEX
by 2 (since two forms will be ignored).

If the routine has jumped back to a level, INDEX must be reduced again (by
1), since the rise or fall preceding a level is not entered into the output
until the level is.

The internal parameters (LB, LB1, KB, LMAX, LMIN, IWID, LTES, and ITEST)
are given the values they had when the routine was at this position earlier in
its execution. These old values may be found in the "P" parameters (PLB,
PLB1, PKB, PLMAX, PLMIN, PIWID, PLTES, and PITEST). [Note: 1In the special
case where INDEX cannot be reduced by 2 (i.e., at the beginning of the

35

SUBROUTINE NAME NAROPK (Cont'd)
DESCRIPTION (Cont'd)

waveform, where INDEX <2), these parameters are reinitialized to their values

at the start of KLASIT, the final entry in the output is rewritten, and UPDAT
is called to reset the "P" and "Q" parameters. A return is then performed
with T=1,]

If the routine is now on a level, T is set = 2; otherwise T=1 and a return

to the calling routine is made. The flowchart of NAROPK is shown in Figure 9.

INPUT
Arguments
S - original data to be smoothed (possibly altered by previous

applications of NAROPK)
FTEMP «~ copy of the S array (dimensioned, like S, as 1024)
LENGTH - length of waveform to be smoothed (= # elements of S or FTEMP to
be used)
P - a peak with width <P is called narrow
KLAS -~ an array (dimensioned 3) holding information on a single rise,
level, or fall
INDEX -~ # of forms already written to output
Disk ~ Previous forms are read in from the output file
OUTPUT
Arguments
T - a parameter indicating (a) no narrow peak found (T=0)
or (b) narrow peak eliminated, return to
rise or fall (T=1)
or (c) narrow peak eliminated, return to
level (T=2)
INDEX - this parameter changes if a narrow peak is eliminated
Disk -~ The last form entered into the output file may be zeroed, and if
the narrow peak is eliminated at the beginning, a new first form
is entered
Commons - PRAM1, PRAM2, PRAM3, PRAM4, ZPRAM
CALLED BY KLASIT, LEV, NONLEV
SUBROUTINES CALLED UPDAT
CALLING SEQUENCE CALL NAROPK (LENGTH, S, FTEMP, P, KLAS, INDEX, T)

36

T=0 > NO NARROW PEAX 1
! T=1 <> NARROW PEAK ELIMINATED, RETURN YO RISE OR FALL p
T=2 = NARROW PEAK ELININATED, RETURN TO LEVEL

-
{ SET 10
; > N HAS NO
! NAROPK —] NARROW PEAX BEEN RETURN
i PEAK FOUND FOUND?
; Yer
; . YES
i
'
: TAKE LOCATE LOCATE
’ 10 mso'v‘nﬁnz 85' A o
PEAK
5 wroNts |] =&"‘mr"’ =81,
? IN PEAK o USUALLY
e
1
1
; "0 m
¥es
FIND INTERPOLATE
AMPLITUDES VALUES AND ALSO PLACE ZERO LAST
AT START —— PUCE NTO —p| THESE VALUES FORM PLACED
AND END TEMPORARY INTO ORIGINAL IN OUTPUT
OF PEAK ARRAY FTEMP ARRAY S
| (THE 2 FORMS COMPRISING
5 THE PEAK ARE ELIMINATED) ;
REDUCE i
” AT RE INTIALZE {
A RETURKING | qumr o THE BEGINNING? PARAMETERS i
PREVOUS 0 A’lEVEl Py INDEX < 2 SET T=1 i
RSe OF TALL INOEX~INDEX 2 ? {*RISE OR FALL j
. NGT ENTERED !
. YET. 50 SET "0 |
NOEX~INDEX 1 - !
; ‘
; !
i iy m :
; PARAMETERS (THE "P* PARAMETERS ARE THE i
‘ PARAMITERS APPROPRIATE ONES FCR TWO FORMS BACK) :
. f r i
1 SeT)
y 7=1 ;
! > RETURN RETURNING i
4 10 RISE OR T0 A LEVEL
A FALL ? 1
| |
i]
P !
h {
Pt x 1
. 1=
. sheruay LES
{ T0 LEVEL
! ,
. :
;
f
i
N

/- Figure 9 - Subroutine NAROPK Flowchart

SUBROUTINE NAME NEWVEC (XDELTA, YDELTA, XERR, YERR)

PURPOSE To draw a vector with coordinates XDELTA and YDELTA, while keeping
track of cumulative errors,

DESCRIPTION
INPUT :
OUTPUT
CALLED BY DSPIT1 CALLS None GRAPHICS? Yes .
DSPIT2 DISK I/0? No
DSPIT3
NEXT1 (from PASSBY)
PICTS
WAMDSP

SUBROUTINES CALLED
CALLING SEQUENCE

! 38
I
!

|
,‘—2-.--- -

s ek i <

SUBROQUTINE NAME NONLEV

PURPOSE To test for a non-level form (rise or fall) and update extremum

points.

DESCRIPTION Subroutine NONLEV compares the wave value at the current wave

pointer, L, with the value at the last significant wave pointer, LB, to check

for a significant change in amplitude (greater than IBAND + NABR(L)). If

there is no significant change, the appropriate local minimum or maximum

pointer is updated and NONLEV returns to the calling routine.

If a significant amplitude change occurs (a rise or a fall), LB is backed

up to LB1 and reset to L and the appropriate minimum or maximum pointer is up-
% dated. In addition, the state variable ITEST is set to -1 for a fall and +1
for a rise, If the preceding form is a level (ITEST=0) or the preceding form

is the same as the current form, NONLEV returns to the calling routine., If

the current form is a fall preceded by a rise, or vice versa, subroutine
NAROPK is called to verify the resulting apparent extremum. If NAROPK
eliminates a peak or valley, NONLEV returns without updating ITEST of the
max/min pointers, IF NAROPK confirms the validity of the extremum, NONLEV
calls subroutine UPDAT, updates the extremum pointer and ITEST, and calls
subroutine KINSRT to store the preceding form in the KLAS array. The flow-
chart for NONLEV is shown in Figure 10,

. INPUT

iy Arguments
: S ~ array containing original data to be smoothed
4

X FTEMP - copy of S array which experiences some modification during
smoothing

NABR - vector threshold for significant amplitude changes

IBAND -~ a single-valued offset added to NABR to determine significant
change criterion

LENGTH -~ length of input S or FTEMP arrays

Common

e v i A o e mm——

/PRAM1/ L - current data pointer

LB - pointer to data at last significant change
LMAX - index of last maximum

\“\ T T T T

39

- —

| [N ¥ ¢ VP YR et iina .

. . . . PERY
e e e e B W e e e s s

LMIN - index of last minimum
ITEST -~ state of last form

-1 - fall
0 - level
1 - rise
QUTPUT
Arguments

T - same as output argument from NAROPK
Common

/PRAM1/ updated L, LB, LMAX, LMIN, ITEST

CALLED BY KLASIT

SUBROUTINES CALLED NAROPK, KINSRT, UPDAT

CALLING SEQUENCE CALL NONLEV (S, FTEMP, KLAS, NABR, IBAND, INDEX, LENGTH,

P, T)

40

. n U RATIRRYS, & 1073 (G il YO~ T
/ ’ * L - PR el - "*1"..':3‘1'\,&‘ R

e e e AL

SEl COMPARE
NONLEV b FIEMP
e VALUES AT {NOT LARGE ENOUGH T0
D1 LAND (B UNEQUIVICALLY DETERMNE
T 10 BE A RISE
OR FALLY

UPBATE
LMAX =1 RETURN

UPDATE
BASE POINTS
1B1=18
B=1L

UPDATE RETURN
(MIN |
EsT 1

PRECEDED BY
LEVEL?

A RETURN
PRECEDED BY
LEVEL?

T,

NOW ON CAW NARROW
RISE NAROPK PEAK
RETURN PRECEDED 8Y T0 CHECK FOR ELIMINATED
FALL? NARROW PEAK ?

CALL UPDAT
NARROW TO UPDATE "7
PEAK AND "0 TEST-
ELIMINATED PARAMETERS
"
NO. SO MUST BE ON RISE
PRECEDED BY RiSE
UPDATE UPDATE CALL KINSET
UMIN=1 (MAX 10 guTPYY
ITEST= -1 -t THIS
RISE

Figure 10 -~ Subroutine NONLEV Flowchart

41

SUBROUTINE NAME PDATA
PURPOSE To initialize KLASIT parameters depending on whether tracked data

or raw data are being examined.

DESCRIPTION PDATA tests argument TRKNUM and initializes the KLASIT
parameters contained in common blocks. For raw data (TRKNUM=0), only
parameters in /PARAMS/ are initialized. For tracked data, /PARAMS/ is
initialized to different data and also elements of /CHNLS/, /SCALE/, and

/CMNDS/ are changed to handle the tracked data. 1
INPUT
Arguments
TRKNUM - equal to zero to indicate raw data, otherwise, it is set to track
number
QUTPUT
Common

/PARAMS/ - new parameter values for KLASIT
/CMNDS/ - new values in case examining tracks
/SCALE/ - new ptsdpy (=50) and other values for tracks
/CHNLS/ - ZLAST = 0 if examining tracks
CALLED BY KLOOK
SUBROUTINES CALLED None
CALLING SEQUENCE CALL PDATA (TRKNUM)

SUBROUTINE NAME PEAKPK

PURPOSE To select peaks in a power spectrum.
DESCRIPTION The routine begins by reading in the parameters to be used.

They are as follows:

(1) AMPMIN - For a point to be recognized as a peak, it must exceed in
amplitude (AMPMIN percent of) the average value of the power
spectrum.

(2) BAND - This parameter determines what is called a significant
change; a significant change must be greater than

(value at this index) + (value at last base)

*
> BAND

(3) PERHI - This parameter is the percentage of the maximum (peak value)

required for the start or end of a peak.

(4) PERLO - This number is the percent of the maximum required before a

slope comparison with FACTOR can be made.

(5) FACTOR - This number is the minimum slope required for the start or

end of a peak if (PERLO * maximum) is exceeded.

(6) BWIDTH - A peak must be at least BWIDTH hertz wide before it is

resolved into two peaks.

(7) SFREQ - Peakpicking will begin at frequency SFREQ.

(8) FMERGE - If two peaks are separated by lecs than FMERGE hertz, they

are candidates for merging.

(9) HMERGE - Two candidates for a merge are merged if the height of one

is less than HMERGE percent of the other.

After reading in these parameter values, BWIDTH is immediately converted
to its equivalent in power spectrum sample points (called ZBROAD). After
initializing some variables, the average value of the entire power spectrum is
calculated and saved for later use, The starting frequency bin L is
determined from the parameter SFREQ, and the algorithm is ready to begin.

The power spectrum is scanned from left to right starting at the frequency
bin corresponding to SFREQ. The frequency bin index L is repeatedly updated
by 1 as the algorithm proceeds; this index is trailed by another index (LB) -

the "last base" - which is updated to L every time a change of direction is

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRITPION (CONT'd)

encountered. At each step, values of the last maximum (LMAX) and last minimum

(LMIN) are available, and a third variable (ITEST) keeps track of whether the
- index L-1 is on a rise (ITEST = 1) or a fall (ITEST = -1).

At each step, it is determined if a "significant change" has occurred.
This significant change is defined by the requirement that

average of values

i *
/difference between values at L and LB/ > at L and LB BAND
Incidentally, a little algebra shows that this condition is equivalent to
2 + BAND
/log (value at L) - log (value at LB)/ > log > —BAND

If no significant change is encountered, the routine moves on, updating
LMAX and LMIN. If a significant fall occurs, LMIN is updated, ITEST is set to
~1, and the routine moves on. If a significant rise occurs, LMAX is updated,

ITEST is set to +1, and the routine may or may not move on. It moves on along

the power spectrum only if the last direction of the power spectrum was also a

rise; if it was a fall, then a minimum has been found.

This routine locates a peak by finding the minimum values on either side
of it.

Once a minimum is found, the routine decides that between this minimum
(LMIN) and the last minimum (LASMIN = last value of LMIN) there is a peak (at
LMAX) to be examined. If this peak is not high enough - meaning its amplitude
must be > AMPMIN percent of the average value of the power spectrum -- then it

VS

is ignored and the routine proceeds as before.

If the peak is high enough, FATPK is called to determine if the peak is
broad enough to warrant being split into two separate peaks (PERHI, PERLO,
FACTOR, and ZBROAD are used by FATPK). If the peak is split, both peaks are
entered into the output array, the appropriate parameters are updated, and the
program continues as before,

If the peak is not broad enough to be split, the subroutine MRGEPK (which
\ uses HMERGE and FMERGE) is called to determine if it should be merged with a

3 PR - v
PN L,

) previous peak, and to "merge it" in the output array if necessary. If no
' : merger occurs, the single peak is placed in the output array.

44

o

Cal 2ia il

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRITPION (CONT'd)

The routine continues in this way until 1) the end of the power spectrum
is encountered, or 2) the specified number of peaks (=NOP < 10) is found. The
flowchart for PEAKPK is shown in Figure 12,

NOTE ON BANDWIDTHS: Currently PEAKPK determines a bandwidth for each peak and

places it in the array TMPOUT along with the location of the peak. However,
bandwidth is not used at the moment and so only the location information in
TMPOUT is sent back from PEAKPK.

Here's how the bandwidths are calculated: the parameter PABOVE (not
user-controlled at this time) determines the value of the bandwidth, depending
on what the program has calculated for the beginning and the end of the peak.

Instead of taking B to represent the bandwidth of the peak in Figure 11a,
the shaded triangle shown in figure 11b can be divided into two parts by a
solid line in such a way that the area in the triangle above the dark line

divided by the total area of the triangle is PABOVE.

@ 4
AMPLITUDE ' |
i
I I
1 1
é FREQUENCY
(TR
AMPLITUDE P ABOVE SPECIFIES THE %
AREA LYING ABOVE THE
— INTERCEPTING SEGMENT
——

5 FREQUENCY

Figure 11 - Peak Bandwidth

45

.-
e e 2 e —— e e e e e

R it

t
i
i
i
)

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRIPTION (Cont'd)

2
- small area 1/2 ab sin @ a b b
Since large area - 1/2 ABsin 6 " A B ° B = PABOVE, the

bandwidth b is defined by b = B PABOVE. This formula is used to calculate
bandwidths for all the peaks found by PEAKPK, but the information remains in
PEAKPK and is not used.
INPUT (Calling Sequence)

ZSPEC - power spectrum array (dimensioned 512)

TPTS - number of points in this power spectrum

(DISK)

Appropriate parameters (BAND, PERHI, PERLO, FACTOR, FMERGE, HMERGE,
BWIDTH) are read in from DPO:OPARAM.DAT,
OUTPUT (Calling Sequence)

JNKOUT - output array (dimensioned 10}

(DISK) -
Commons: Scale
CALLED BY POWDSP, SEARCH CALLS: FATPK, MRGEPK

SUBROUTINES CALLED
CALLING SEQUENCE CALL PEAKPK (ZSPEC, TPTS, JNKOUT)

(RISE PRECEDES
RISE)

(COMPARE VALUE AT L WITH
VALUE AT LB

UPDATE
LAST BASE
(B=L

WAS

THE LAST

SIGNIFICANT CHANGE
A RISE?

S0 NOW RAVE FOUND ANOTHER
MINIMUM POINT)

S0 HAVE ACCEPTABLE
PEAK OR PEAXS)

DETERMINE

EFFECTIVE

WIOTH OF PEAK. { (TO DETERMENE WIOTH USE

IT STARTS AT PERHI, PERLO. AND FACTOR)

L1 AND ENDS
AT (2,

L2L1+1 & KBRD
?

PEAKS;
R 1

AND 12 INTO
OUTPUT

MOVE T0
INTIALIZE _ Nexy
FRAKR VARIABLES Sﬂflf
UPDATE
-— LMAX
LMIN
UPDATE
LMiN
AND SET
JTEST= -1
UPDATE
LMAX YES
AND SET
EST=+1
"?ug‘;}; UPDATE
‘ T0 THE CURRENT 1 X
"'{‘m"":’” WEST=+1
!
, NO
i
1 1 PEAK;
< ¥
' : ENTER
s . LMAX
N INTD DUTPUT
i
'y
1 UPDATE
LAMX N
ANO SET
[IWEST=+1

YES
OUTPUT RAL?

Figure 12 - Subroutine PEAKPK Flowchart

SUBROUTINE NAME PICTS

PURPOSE To set up some standard (straight-line) pictures to be used
repeatedly by VU routines.

DESCRIPTION

INPUT

QUTPUT

CALLED BY vu CALLS NEWVEC GRAPHICS? Yes
SUBROUTINES CALLED DISK I/0? No

CALLING SEQUENCE

SUBROUTINE NAME PKSUB (TMPOUT, ZSPEC, POWPTS, LOGPOW, NOP)
PURPOSE To display the peakpicker results (flashing X's) on top of the

power spectrum display.

DESCRIPTION

INPUT

QUTPUT

CALLED BY POWDSP CALLS None GRAPHICS? Yes
DISK 1/0? No

SUBROUTINES CALLED
CALLING SEQUENCE

SUBROUTINE NAME POCALC (PTSDPY, ZPSCAL, LOGPOW)

PURPOSE To calculate the power spectrum, low power spectrum, or phase

spectrum (as determined by LOGPOW).

DESCRIPTION
INPUT
OUTPUT
CALLED BY POWDSP CALLS BESSEL GRAPHICS? No
SEARCH FOUREA DISK 1/0? Yes
STRA10 [DPO:WINDOW.DAT))

SUBROUTINES CALLED
CALLING SEQUENCE

SUBROUTINE NAME POWDSP (PDRAW)
PURPOSE To display the power spectrum (or log power spectrum or phase

spectrum) with peakpicker results superimposed if desired.

DESCRIPTION

INpUT

QUTPUT

CALLED BY VU CALLS POCALC, POWSUB GRAPHICS? Yes
SUBROUTINES CALLED PEAKPK, PKSUB DISK 1/07? Yes
CALLING SEQUENCE QVUCSI {DPO:OPARAM.DAT]

SUBROUTINE NAME POWSUB (LOGPOW, ZSPEC, POWPTS)

PURPOSE To display the contents of ZSPEC (usually the power spectrum) for

POWDSP.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POWDSP CALLS NEWVEC GRAFHICS? Yes
‘: SUBROUTINES CALLED DISK I/0? No
CALLING SEQUENCE

SUBROUTINE NAME PRAMTR

PURPOSE To display values of specified parameter groups in common /PARAMS/,
DESCRIPTION

The common block /PARAMS/ contains three groups of program parameters:
1) N1, L1, IM, P1, QO, Q1
2) N2, L2, I2, P2
3) L3, 13, P3
Subroutine PRAMTR displays the group of parameters and their current
values specified by the value of the argument WHICH. The display generated is
assigned the subpicture number PR1, PR2, or PR3, corresponding to the group
number, and DCHEK (PRi) is set to ON to record which subpicture is displayed.
INPUT
Argument
WHICH - is equal to one, two, or three depending on which parameter group
is to be displayed
Common variables:
PR1, PR2, PR3 in /DNAMES/ contain subpicture tag numbers set aside for
each group (0 < PRi < S20).
DCHEK(20) in /DSTAT/ - DCHEK (PRi) is set to ON if group i displayed
OUTPUT None
CALLED BY KCMNDS
SUBROUTINES CALLED Norie
CALLING SEQUENCE CALL PRAMTR (WHICH)

50

SUBROUTINE NAME PRESS
PURPOSE To accept an array of ASCII characters and move all the blanks in

the array to the right.

DESCRIPTION The input line INPUT is scanned from left to right by two
indices, the first (I) always trailing the second (J). Whenever J encounters
a non-blank character, this character is placed into INPUT (I), and a blank is
placed into INPUT (J). This press continues until J > 51, at which time all
blanks will have migrated to the right. The flowchart for PRESS is shown in
Figure 13.

INPUT

Argument

INPUT - a logical array (dimensioned 51) containing input line
OUTPUT
Argument
INPUT - same array with all blanks pushed to the right
CALLED BY QVUCSI
SUBROUTINES CALLED None
CALLING SEQUENCE CALL PRESS (INPUT)

51

PRESS

INITIALIZE
I=1

J=1

MOVE THIS
CHARACTER TO
THE LEFT:
INPUT(=
INPUTLR

INCREASE
| T0 RECENE

| NEXT NON-BLANK

CHARACTER:
=141

Figure 13 - Subroutine PRESS Flowchart
52

®._ . 2

SUBROUTINE NAME QVUCSI

PURPOSE To act as a command string interpreter by converting an ASCII
string into codes recognizable by the VU routines.
DESCRIPTION This routine begins by initializing those (logical) strings
which will be used to hold intermediate results. These strings are CMAND,
CNUM1, CNUM2, and CNUM3, They will give rise to the output as follows:
CMAND will produce CMAND 1 (a single letter)
CNUM1 will produce NUM1 (an integer)
CNUM2 will produce NUM2 (an integer)
CNUM3 will produce ZNUM1 (a real number)
NUM3, although listed as an output variable, is currently not needed.
Both VU and SELECT were originally designed to accept commands in the

following form:

INPUT
(OPTIONAL) REAL
LETTER INTEGER. SECOND NUMBER
INTEGER
CMAND1 NUM1 NUM2 INUM1

53

SUBRQUTINE NAME QVUCSI (Cont'd)
DESCRIPTION (Cont'd)
QVUCSI was designed to allow more flexibility in input (for example, instead

of using P for power spectrum, the entire word POWER SPECTRUM can be typed for
clarity) and to allow merger of the VU and SELECT programs. It was thought
that eventually such cryptic commands as PS5 (apply PEAKPK to power spectrum
and display the results) could be changed to a more readable and more easily
remembered form,

QVUCSI receives the string INPUT to be processed, and the first objective
is to locate the equals sign, which will divide the input line into two
"halves," the left-hand (LHS) and the right-hand (RHS) sides.

PRESS (documented elsewhere) is called first to move all blanks to the
right in INPUT, and applying the system routine SCOPY (see the system
subroutine manual for a description of all routines other than PRESS used by
QVUCSI) puts a null byte (=zero) at the end of INPUT. With the null byte,
INPUT can be manipulated by other system subroutines such as TRIM, which is

now used to chop off trailing blanks,

A call to INDEX puts the location of the equals sign into the variable
EQLOC, If no equals sign is found, INDEX sets EQLOC =0; in this case the
equals sign should be assumed at the far right of INPUT, so EQLOC is reset to
one more than the (non-zero) length of INPUT (EQLOC - len (INPUT) + 1).

Next SUBSTR is called to put the RHS into the string called CNUM3. The

input has now been subdivided as follows:

~—) Nt~

LHS CNUM3=RHS

SUBROUTINE NAME QVUCSI (Cont'd)
DESCRIPTION (Cont'd)

Next VERIFY is used in a loop to find the place on the LHS where the numbers
begin. Then SUBSTR is called twice to divide the LHS into two strings (a
number string and a letter string) as follows:

INPUT
— I S R
LHS CNUM3
S — S, a—
CMAND CNUM1

As shown, the letter string is called CMAND (and may consist of more than one

letter at the moment) and the number string is called CNUM1 (which may consist

-t

b o A o e ———— e M B e s m

of two integers separated by a dash). Special case: If no numbers at all
appear on the LHS, the string CNUM1 is defined to be the string which starts
with the equals sign and continues to the right, including the RHS in the
process. This step is somewhat clumsy, since CNUMi1 should be the null string

at this point, but for "historical reasons" it was not done right away. This
CNUM1 array does become null a few steps later (because it begins with an
equals sign), so no harm is done.

Since the CNUM1 array might be two numbers, VERIFY is called to locate the
separator between them (usually a dash). Then CNUM2 is truncated at this

-

55

- —— ~ A N
R -

)
".ﬂ_—- - . i
t
1

SUBROUTINE NAME QVUCSI (Cont'd)

DESCRIPTION (Cont'd)

separator by SCOPY and the removed part is placed into the string CNUM2.

(Note that the truncation of CNUM1 yields the null string if CNUM1 begins with
an equals sign, as it does in the :)pecial case mentioned above,)

The input has now been divided into substrings as shown below:

INPUT

—— S — S — N——~—
CMAND CNUM1 CNUM2 CNUM3

From these four strings the appropriate number can be determined (with the
help of the DECODE facility). Using DECODE, CNUM1 yields NUM1, CNUM2 yields
NUM2, and CNUM3 yields ZNUM1, CMAND1 is defined as the first element of the
string CMAND. (If CMAND is the null string, CMAND1 is defined as a blank.)
The flowchart for QVUCSI is shown in Figure 14,

Note: Since CMAND1 is given its value by setting it equal to a logical
variable, the high-order byte is filled with zeroes, However, CMAND1 when
used by VU (and SELECT, maybe) is compared with words having the ASCII code
for a blank in the high-order byte, so this code must be placed into CMAND1 by
doing an ",OR." operation as follows:

CMAND1 = CMAND1 .OR, 20000

56

INPUT (Calling Sequence)
INPUT - a logical array (dimensioned 51) containing up to 50 ASCII

characters
(DISK)
OUTPUT (Calling Sequence)
CMAND1 - integer variable containing code letter
NUM1
NUM2

integer variable containing code number 3

integer variable containing code number

NUM3 - integer variable containing code number

§ ZNUM1 - real variable containing code number
F (DISK)
Commons None
CALLED BY VU, KLOOK, POWDSP CALLS PRESS

SUBROTUINES CALLED
1 CALLING SEQUENCE CALL QVUCSI (INPUT, CMAND1, NUM1, NUM2, NUM3, ZNUM1)

57

INITIALZE
VARIABLES

CALL SCOPY T ADD
NULL BYTE AT END
OF INPUT

ASSUME EQUALS
SIGN AT FAR CALL INDEX TO PUT
RIGHT; SET LOCATION OF
EQLOC=LEN EQUALS SIGN INTO
(INPUTY+ 1 E0LOC

CALL SUBSTR TO
PUT RHS INTO
CNUMI

1

LOCATE (USING
VERIFY) THE
BEGINNING AND
END OF NUMBER
STRING ON LHS

CALL SUBSTR TQ CALL TR T
PLACE STRING STAR PUT Lﬁsuss“iﬁn 03
TING AT EQLOC INTO LHS INTO THE

CNUM1 STRING CMANO

STRING INTG CNUM1T

NO (ONLY 1 NUMBER IN CNUMT

OETERMINE
VALUE OF
FROM

Figure 14 - Subroutine QVUCSI Flowchart
58

SUBROUTINE NAME REEDTR (DSKBUF, IBLK, TRKNUM, ICHAN)
PURPOSE To read the disk for DISKRD -- 256 words from block # IBLK into the
array DSKBUF using channel ICHAN.

DESCRIPTION
INPUT

1 OUTPUT
CALLED BY DISKRD CALLS None GRAPHICS? No
SUBROUTINES CALLED DISK 1/0? Yes
CALLING SEQUENCE [DPO: TRAKS2.DAT]

SUBROUTINE NAME SAVEIT (OUTNUM, RAW)
PURPOSE To store up to five display buffers on disk (to be read in and

displayed by the separate program MANYVU).

DISCRIPTION
INPUT
f OUTPUT
? CALLED BY VU CALLS None GRAPHICS? Yes
SUBRTOUTINES CALLED DISK I/0? Yes
CALLING SEQUENCE (DPO:TEST00. DPY
' DPO:TESTO1.DPY
b | DPO:TESTO02. DPY
, é DPO:TEST03.DPY
i

DPO: TESTO4.DPY]

SUBROUTINE NAME SEARCH

PURPOSE To determine major peaks in consecutive power spectra and place the
results in a file called DPOsMRPK2,.DAT., input for the SELECT program.

DESCRIPTION This routine begins by reading in appropriate parameters from
the file DPO:OPARAM.DAT, namely
SFREQ - the starting frequency for the peakpicker
LOGPOW - a parameter which currently specifies both the type of -
window (Kaiser-Bessel or rectangualr) and the type of
spectrum (power, log-power, or phase)
ZPSCAL -~ power spectrum scale factor
Next the output file is set up (DPO:MORPK2.DAT) and the bin number (LSTRT) #
corresponding to SFREQ is calculated.
The user is now prompted to specify
(1) where the first spectrum will be taken (ZSTART)
(2) the amount to be shifted before the next spectrum is taken (ZMOVE)
(3) the total number of spectra to be taken (ZWINDS).
These three values are written into the last record (record #1024) of the
f output file along with the number of points of data submitted to each FFT
(PTSDPY).

The current sample number (ZNUM) is saved so that the array now being

displayed can be replaced after this routine is done.

Now the routine calculates NWINDS power spectra by successively repeating
the following steps:

(1) DISKRD is called to shift by ZMOVE samples and fill the array ARRAY

e -

- -

. with raw data from this new vantage point

‘ ‘ (2) An array PPOUT is initialized to zero

1# ? (3) POCAL is called to calculate the spectrum for these data (the data in
ARRAY)

(4) PEAKPK is called to pick out prominent peaks in the spectrum
(5) The results of PEAKPK are placed into the PPOUT array after removing
the offset (STRT) corresponding to SFREQ. .
WARNING: LSTRT was originally subtracted so that peaks picked high in the
spectrum could be easily displayed when the SEARCH output was displayed

within the VU programs. Now that an entirely new set of routines is

60 |

SUBROUTINE NAME SEARCH (Cont'd)

DESCRIPTION (Cont'd)
available for the display and tracking of the SEARCH output, it is best
while using SEARCH to keep LSTRT=1 (or equivalently SFREQ=0). Otherwise
frequency readings in SELECT will not be correct, since the starting

frequency of the peakpicker (SFREQ) is not placed in the output file

DPO:MORPK2.DAT to be used by SELECT in determining frequencies. Since

SELECT can display and track in any area of the spectrum, it is best to

keep SFREQ=z0 while performing SEARCH and perhaps to increase the number of

peaks sought by PEAKPK to catch the higher frequencies.

(6) The PPOUT values are written onto a single record in the output file,
along with a variable LTYPE (set identically = 1 in this routine)
which will be used by SELECT to "mark" or "unmark" spectral slices.

After these six steps have been performed NWINDS times, SEARCH closes the
output file and has VOTRAX announce that the peakpicking has been completed.

The flowchart for SEARCH is shown in Figure 15.

INPUT (Calling Sequence)

(DISK)

Reads in the parameters SFREQ, starting frequency, LOGPOW, indicator of
spectrum type, and ZPSCAL, power spectrum scale factor from the file
DPO:OPARAM, DAT.

OUTPUT (Calling Sequence)

(DISK)

Puts peakpicking results for all the power spectra taken on the file
DPO:MORPK2. DAT.

Commons: ARRAYS DNAMES
DSTAT CMNDS
LETRS CHUNKS
SCALE
CALLED BY vu CALLS DISKRD, POCALC,
SUBROUTINES CALLED PEAKPK, SHOUT

CALLING SEQUENCE CALL SEARCH

61

READ IN
APPROPRIATE CMAC'%U'\“GE
PARAMETERS STARTI
SEARCH FROM FREQUENCY
DPo: OPARAM, BIN

DAY

SET UP
QUTPUT FILE
DPo: MORPKZ,

047

T

GET USER
SPECIFICATIONS
2START
IMOVE
ZWINDS

1

SAVE THE
LOCATION OF
THE RAW
DATA BEING
DISPLAYED

CALL DISKRD
T0 JUMP 10
SPECIFIED STARTING
POINT (ZSTART)

CLOSE
FiLE, CALL
VOTRAX 10
ANNOUNCE
COMPLETION

RETURN

CALL DISKRD
YES T0 JUMP BACK

g T0 ORIGINAL

DISPLAY POSITION

DONE?
IWINOS SPECTRA
TAKEN?

CALL POCALC
T0 CALCULATE
POWER SPECTRUM

e e A e e e

i Figure 15 - Subroutine SEARCH Flowchart
/ 62

SUBROUTINE NAME SHOUT (WHAT)
PURPOSE To issue voiced error responses by calling VOTRAX through VOCAL2.

DESCRIPTION

INPUT

OUTPUT

CALLED BY CHINFG E£E£§ VOCAL?2 GRAPHICS? No
SEARCH DISK I/0? No

SUBROUTINES CALLED
CALLING SEQUENCE

Caie) anA e b Lt AEEE e e A A

SUBROUTINE NAME STRA10 (ZSPEC, POWPTS)
PURPOSE To straighten phases of power spectra.

DESCRIPTION
INpUT
, OUTPUT
CALLED BY POCALC Eﬂ££§ None GRAPHICS? No
SUBROUTINES CALLED DISK I/0? No

CALLING SEQUENCE

SUBROUTINE NAME TAPMOV (NCHAN)
PURPOSE To call the DR11C programs to transfer data from tape to disk.

DESCRIPTION
INPUT
QUTPUT
CALLED BY vu CALLS DR11C1, DR11C2, GRAPHICS? No
SUBROUTINES CALLED DREND DISK I/0? Yes 1
CALLING SEQUENCE [Write to user-
specified file]

SUBROUTINE NAME TYPEIT (NUM1, ZNUM1, TRKNUM)

PURPOSE To type out ZNUM1 values of the raw data.
DESCRIPTION

CALLED BY KLOOK CALLS None GRAPHICS? No

VU DISK I/0? No
SUBROUTINES CALLED

CALLING SEQUENCE

SUBROUTINE NAME UPDAT
PURPOSE To update the "Q" and "P" parameters in KLASIT. These parameters

tell what the values of internal parameters were on previous forms.
DESCRIPTION This routine saves the internal variables of KLASIT for use if
the most recent forms must be eliminated because of a narrow peak. (If the
routine skips back several forms, it is desirable to know what the prevailing
parameters were.)

UPDAT sets the "P" parameters to the "Q" parameters (thus saving the "Q"
parameters), then sets the "Q" parameters to the "A" parameters. When the
first sample is being used, the "Q" parameters must be initialized.

The flowchart for UPDAT is shown in Figure 16.
INPUT (Calling Sequence)

(DISK)
OUTPUT (Calling Sequence)
(DISK)
Commons: PRAM1 original parameters
PRAM2 “P" parameters
PRAM3 "Q" parameters
PRAMS WA" parameters
CALLED BY KLASIT, LEV, CALLS None

NAROPK, NONLEV
SUBROUTINES CALLED

CALLING SEQUENCE CALL UPDAT

UPDAT

,!
l
!
[
!
E

INITIALIZE THE | YES
-
PARAMETERS

NO

SET THE "P"
PARAMETERS
=THE “0"
PARAMETERS

SET THE "0"
PARAMETERS
=THE "A"
PARAMETERS

)

Figure 16 - Subroutines UPDAT and UPDAT2 Flowcharts
66

UPBAT2

INITIALIZE THE
“B”
PARAMETERS

ARST
SAMPLE

NO

SET THE “A”

PARAMETERS
=B

PARAMETERS

SET THE 8"
PARAMETERS
= LATEST
PARAMETERS

=)

\ -

i SUBROUTINE NAME UPDAT2

PURPOSE To update the "A" and "B" parameters in KLASIT. These parameters
tell what the values of KLASIT internal parameters were on previous forms.
DESCRIPTION This routine saves the internal variables of KLASIT for use if

the most recent forms must be eliminated because of a narrow peak. (If the

routine skips back several forms, it is desirable to know what the prevailing
parameters were.,) The flowchart for UPDAT2 is shown in Figure 17.

UPDAT2 sets the "A" parameters to the "B" parameters (thus saving the "B"
parameters) and then sets the "B" parameters to the current parameters. (The
"B" parameters are initialized to the current parameters if Lz1.)

The relative ages of these sets of parameters are shown in Figure 16.
INPUT (Calling Sequence)

OUTPUT (Calling Sequence)

(DISK)

Commons: PRAM1 original parameters %
; PRAMS "A" parameters :
‘ PRAMG "B" parameters ;
: CALLED BY KLASIT, LEV CALLS None

SUBROUTINES CALLED
CALLING SEQUENCE CALL UPDAT2

OLDEST = } —+ + 4 > LATEST

P 'y “A* “8” CURRENT i
PARAMETER

LAST VALUES OF
CURRENT PARAMETER

LAST VALUES OF !
“B” PARAMETER

LAST VALUES OF
“A” PARAMETER
LAST VALUES OF
“0" PARAMETER

Figure 17 - Relative Ages of UPDAT and UPDATZ2 Parameters

67

SUBROUTINE NAME VU (MAIN PROGRAM)

PURPOSE To provide excecutive program control for the graphics display

program.,

i DESCRIPTION
OUTPUT
CALLED BY None CALLS CHINFO, DISKRD, PICTS, GRAPHICS: Yes
SUBROUTINES CALLED DSPRAW, FFTDSP, POWDSP DISK I/0: No
CALLING SEQUENCE KLOOK, SEARCH, ADJUST,

TAPMOV, SAVEIT, TYPEIT,
XYPLOT, LOCATE, QVUCSI

SEET T T TR TR e, T TR

OUTPUT

SUBROUTINE NAME WAMDSP

PURPOSE To display WAMSER results.

DESCRIPTION WAMDSP reads the WAMSER approximation to the original data from
the disk file DPO:WAMSER,DAT. WAMDSP reads each waveform triplet and calls
NEWVEC to generate the corresponding display in a manner similar to subroutine
DSPIT3. WAMDSP uses the decay time element of the WAMSER triplet to break up

rises and falls into two line segments joined at x equal to the last x

displayed plus decay time (the second segment running from last x + decay time
to last x plus duration). The display is turned on and given the tag and
status variable MWAMS. Before returning, WAMDSP also generates a copy of the
MWAMS display both at the top of the screen and at the bottom (tagged TWAMS
and BWAMS) and leaves the top one on if "W1" was the last user command and
leaves the bottom one on if "W2" was the command.
INPLT Diak: DPO:WAMSER.DAT

A FORTRAN direct-access file with 1024 records consisting of three words
each. Record 1024 contains the number of actual records composing the
approximation. Each triplet consists of a level value, decay time, and form
duration.

Common

/CMNDS/NUM3 - 2nd character of last user command

Common
/DCHEK/MWAMS, TWAMS, and BWAMS - status variables of the three WAMSER
displays
CALLED BY KLOOK
SUBROUTINES CALLED NEWVEC
(graphics library)
CALLING SEQUENCE CALL WAMDSP

SUBROUTINE WAMSER

PURPOSE To smooth transitions between level forms and rise or fall forms in

KLASIT output.

DESCRIPTION Subroutine WAMSER performs final smoothing on the waveform data

produced by subroutine KLASIT and stored on disk file DPO:FINAL.DAT. WAMSER ’
refines the boundary points of rise and fall transitions within the KLASIT

data. In the case of consecutive non-level forms, the start of the second .
transition (and end of the first transition) is the point at which direction

changes as provided by KLASIT. Should a rise or fall be preceded by a level,

the transition begins at the end of the first series of points in the original

data of minimum length, RUN, in the level which contains only "isolated"

jumps, if any, in the direction of the transition. An isolated jump is a

change occurring at a point whose two successors are at the same level as its

predecessor., In a similar manner, if a level follows a rise or fall, the

transition associated with the rise or fall ends in the level region at the

3 endpoint, working backwards, of a similar "run" of points in the level. If

the minimum run length (RUN) is not exceeded, then the transition begins at
the point at which the change in amplitude from the level amplitude exceeds a
percentage (parameter BAND) of the total change represented by the rise or
fall.

After transition boundary points are determined, the new durations of the

forms are calculated and a decay time is added to the form triplet to provide

a better representation of the curve shape. The decay time is the number of
points required for the transition to achieve a percentage (parameter TEN) of
the total change in level. The type of form, duration, level, and decay times
are stored in triplets and written to the disk file DPO:WAMSER.DAT as
described in the OUTPUT paragraph.

KLASIT triplets are read from disk one at a time, and the new WAMSER

triplets are stored on the output disk file as they are created. The routine

retains copies of the previous two WAMSER forms and the next KLASIT form
surrounding the current form triplet. o]

The WAMSER flowchart is shown in Figure 18.

70

NAME WAMSER (Cont'd)
INPUT
Arguments
ARRAY - original data array -~ raw data
LENGTH -~ length of ARRAY
: TEN -~ parameter (real valued) containing percentage factor for decay
time computation
BAND - floating point parameter containing level change threshold for
alternate method of marking transition start or stop.
DISK

DPO:FINAL.DAT - file containing triplets comprising KLASIT approximation
to original data contained in ARRAY

Data Statement

RUN = 4 - parameter containing minimum number of points for run

= OUTPUT

] DISK

DPO:WAMSER.DAT - file containing triplet comprising WAMSER approximation

X to original data

(1024 records, three words per record, FORTRAN direct

access. Record number 1024 contains NROWS - the total

number of triplets in WAMSER smoothed signal. Each

triplet defined as follows:

KCOL1 = value of level
KCOL2 = 0 if this form is a level, or

= decay time at start of the rise or fall
KCOL3 = duration of the form, or

0, if this is end level)

n

CALLED BY KLOOK
SUBROUTINES CALLED None
CALLING SEQUENCE CALL WAMSER (ARRAY, LENGTH, NROWS, TEN, BAND)

71

| 5

£
: »
| L
; £
_, N~ g m
] - L 3 @
= m mm W ; mmmmm] Wm 113 mm) &
i 3L B | ; H el &
mmwm,mm TINEE ! i Fifie z

4] BoR g5 o
s | |77 | .
" i ! 3
i o
h : :
a
$ MMG M M 1
! a5 - mmmmm ©
@
$-
3
. of 8 =
m

SUBROUTINE NAME VOCAL?2
PURPOSE To allow sentences to be enunciated by VOTRAX.

DESCRIPTION
INPUT
OUTPUT
CALLED BY SHOUT CALLS None GRAPHICS: No
SUBROUTINES CALLED DISK I/0: No
CALLING SEQUENCE
SUBROUTINE NAME XYPLOT (BUFFER)
; PURPOSE To produce a hardcopy of the current display.
i DESCRIPTION
INPUT
OUTPUT
CALLED BY SELECT CALLS None GRAPHICS: No
' KLOOK DISK I/0: No

vu
SUBROUTINES CALLED
CALLING SEQUENCE

73

VU FILE DESCRIPTIONS

Input Data File
The input file is a non-FORTRAN, unformatted disk file. Each block on the

file contains 256 words (16 bits), each is an integer value. The blocks are
read one at a time as the data in the block are required. A specified block
is read using a FORTRAN callable RT-11 SYSLIB function IREADW, The statement
is
WRDSRD=IREADW (256,DSKBUF,IBLK, ICHAN)

! which reads 256 words from a block IBLK on a file associated with ICHAN., The
| words are stored in a buffer called DSKBUF. The acutal number of words read
is stored in WRDSRD. All variables are integer values.
Parameters File

The user adjustable parameters are stored on a file named DPO:OPARAM.DAT.
This file contains both the current parameters and the default parameters.
This file is created with two FORTRAN write statements as follows:

WRITE(98) AMPMIN,SFREQ,LOGPOW,AMPBEG, (IDEF(I),I-1,4)

WRITE(98) BAND, PERHI,PERLO,FACTOR,FMERGE, HMERGE,BWIDTH, ZPSCAL,

1 (ZDEF(I),I-1,8)
AMPMIN, SFREQ, LOGPOW, AMPBEG, and IDEF are INTEGER*2 variables. BAND, PERHI,
PERLO, FACTOR, FMERGE, HMERGE, BWIDTH, ZPSCAL, and ZDEF are REAL®4 variables.
Window Parameters

The Kaiser-Bessel window parameters are generated and stored on a file
named DPO:WINDOW.DAT., This file is created with FORTRAN unformatted direct
access 1/0, The file, assigned as logical unit 71, is defined with a length
of 1025 records where each record contains two words. The FORTRAN definition
statement is

DEFINE FILE 71 (1025,2,U,ASST1)
The windowing parameters are stored by creating PTSDPY records. The FORTRAN
statement is
i WRITE(71'I) ZWINDO .

74

|
|
g ‘
1 e T — ;

1

where I runs from I to PTSDPY, and ZWINDO is the real Kaiser-Bessel window
parameter. The 1025 record contains PTSDPY and is written with FORTRAN
statement

WRITE(71'1025) PTSDPY
PTSDPY is an integer variable.
Peakpick Results

The peakpicking results generated for SELECT (the "ZI" command) are stored
on a file named DPO:MORPK2.DAT. This file is created with FORTRAN unformatted
direct access I/0. The file, assigned to logical unit 77, is defined with a
length of 102Y4 records where each record is one more than the maximum number
of peaks (currently 10). The FORTRAN definition statement is

DEFINE FILE 77 (1024,RSIZE,U,ASSTT)

where RSIZE is an integer equal to the number of peaks plus 1. The last
record (1024th) is first written with FORTRAN statement

WRITE(77'1024) ZSTART,ZMOVE, NWINDS, PTSDPY
ZSTART and ZMOVE are REAL®4 variables representing the first sample and the
shift duration, respectively. NWINDS and PTSDPY are INTEGER*2 variables
representing the number of windows and the points displayed, respectively.
The peaks are written on disk, one window per record, starting with record
one, The FORTRAN statement is

WRITE(77'JWNDOO LTYPE,(PPOUT(I),I=1,NOP)
where JWNDOW runs from 1 to NWINDS, and NOP is the number of peaks. LTYPE and
PPOUT are INTEGER¥*2 variables. PPOUT contains peakpicking results.
Display Buffer Save Files

As many as five display buffers may be saved on five files with the "T5"
function. The buffers are stored on consecutive files named DPO:TESTO00.DPY,
DPO:TESTO1.DPY, DPO:TESTO02.DPY, DPO:TEST03.DPY and DPO:TESTO4.DPY. Each
buffer is saved using the FORTRAN statement

CALL SAVE(DPO:TESTO0)

which is described in the FORTRAN extensions for the VT1t Graphics Support.
The file name is updated for each consecutive call.
KLASIT Output Files

There are three KLASIT output files and all have the same format. They
are all unformatted FORTRAN direct access files with 1024 three-word records.

The last record contains only the actual number of data records on the file.

75

-

The three files are

The First Approximation to the Unsmoothed Data (UNSMOO)

The Smoothed Noise (SMOO)

The Final (KLASIT) Smoothed Approximation to the Original Data (BFIN2)
The files are set up by the following assignments:

CALL ASSIGN (79, 'DPO:UNSMOO,DAT', 14) or

CALL ASSIGN (79, 'DPO:SMOO.DAT', 12)

CALL ASSIGN (79, 'DPO:FINAL.DAT', 13) and

DEFINE FILE 79 (1024, 3,YU,ASST79)
Each three-word record consist of

1. 0, 1, or -1 indicator for level, rise, or fall

2. endpoint of the form

3. value of the level
WAMSER Qutput File

There is one WAMSER output file containing the WAMSER smoothed approxima-
tion to the original data. It is an unformatted FORTRAN direct access file
containing 1024 three-word records. Each record corresponds to and describes
a linear form used to approximate the original data in an indicated time
interval. The last record on file contains the count of the forms used to
form the approximation. The file is set up by the following statements:

CALL ASSIGN (80, 'DPO:WAMSER.DAT', 14)

DEFINE FILE 80 (1024, 3, u, ASS80)
Each three-word record consists of

1. value of level (or value of rise/fall at end)

2. 0 if form is a level or, if not a level, decay time

3. duration of form (or zero if this is the end level)
KLASIT Scratch File

The input array containing data to be smoothed by KLASIT is written out to
a scratch file so that it is available for recovery purposes. The file is a
FORTRAN unformatted binary file created by the statements:

CALL ASSIGN (81, 'DPO:KLSINP.DAT', 14)

WRITE (81) LENGTH, (S(I),I-1,LENGTH)

VU LINKING PROCEDURE

Figure 19 shows the RT-11 BATCH file required to generate the VU execution
module. The subroutine object files are on DPO. These object files are
. created by compiling the FORTRAN routines and by assembling the MACRO
routines. VTLIB is the RT-11 library containing the graphics display drivers.
SYSLIB is the FORTRAN callable system subroutine library. The FORTRAN object
time library is attached with the /F switch in the first link statement. The
/C switches are command line continuation indicators.

77

SRS SPFSE 5 TN S e il

$.10R o
$RUN LINK

$NNATA

DEOIVUES00Ty DFOSVU=DROIVUS SYIUTLIRyLFSI IR, SYSLIR/KI2500/F/C

DFOIRCNTRLZ7031/C b

[F03LOCATE/D:1/C
DFOIGAVEIT/0:1/C
[0 3 FOWDSF/0:2/C
NEOQIFFINSF/0:2/C
NEO S TAFMOU/032/C
fr0 s B lIUST, 01270
D02 SFIRAWZ02/C
AEFOIUTSILS/032/C
[FQ S WAMNISE /02 2/C
FGINCRENT/0:2/C
HEQ KCHMNRG/032/0
L0 CHANGE 70 2/C
LFOSHTRMINYFOATAZO2/C
DG IR ASTT/032/6
OFOIRLOUT/082/C
(-0 LMAMSER /03 2/C
[0 SEARCH/O 3 2/C
PIOIXTHL OT o XYHOLR/082/C
DFD VIS T T /03 3/C
T 9 CHINEO /03370
W0 S FOLAL G /01370
DEO S ONSUERZ0 L 3/C
HEQ S FERSUKR/O 0 3/C
TG A SUR/Q3/0
HEQ IRIAM T /08 3/C
) O IYHETT/033/C
NEQTFEAKER /03 3/C

: HEDIRNOLEY /0 3/C
GG LR EVEL /08 3/C
IO SKRDZ0:3/C
HHGTHAGTAF /03 370
[F0 S HAUKEN /03 4/C
HF o LWNARNF e KUFDT1/0 8 4/C
LFOIR INSRT/034/C
HFQINEWIEC»FICTS/084/C
DO L SHOUT y YACAL2 /02 4/C
GFGIRUMNT2/034/C
HFOISTRATO/034/C
[F0 S MRBEF. /08 4/C
HEQIFATIR 708 4/C
LFOSRFEOTR/01 4
00
$EQJ .

Figure 19 - BATCH File to Link VU
78

PROGRAM SELECT

SELECT is an interactive graphics program for the examination, selection,
and tracking of peaks in power spectra. It is coded in FORTRAN and runs in
the same PDP 11/45 minicomputer system as does program VU, SELECT operates on
data supplied to it by program VU in the form of frequency bin numbers associ-
ated with peaks in individual power spectra. Each list of numbers associated
with a single power spectrum is called a "spectral slice."™ SELECT allows the
user to examine an ensemble of spectral slice data and track peaks throughout
the ensemble, The functional overview of SELECT as well as its command
language are contained in the ISPARS User's Guide.1 This section presents,
alphabetically by subroutine name, the subroutine descriptions, input/output,
g files, and linking procedures for program SELECT.

79

[RRRITRCCY, < = WPy At itinc'sndiaimelcs. i,

SELECT SUBROUTINE DESCRIPTIONS
: SELECT
PURPOSE To mark and store selected spectral peak data, perform tracking of

spectral peaks through this data using selected parameter values, and store

tracking results on disk.

DESCRIPTION SELECT is the central control program for analysis and display
of peaked spectral data. SELECT accesses this spectral data from the file
DPO:MORPK2.DAT created by program VU and displays the first thirty slices of

data. SELECT then awaits user ccmmands to continue processing the data, The

user may examine the entire file of peaked spectral slices using "UP" and
"DOWN" commands and can select and mark any number of slices for future
processing by the tracking procedure. User slice selections are indicated on
the current display by changing the baseline for the slice from a solid to a
dashed line, When the selections are complete, the designated spectral slices
are retained on the disk file, DPO:TRKABL.DAT, which serves as input to the

E tracking procedures when they are initiated by the appropriate user command.
The results of tracking are stored on disk file, DPO:TRAKED.DAT, and can be
displayed on user request. The two files produced by SELECT, DPO:TRKABL.DAT
and DPO: TRAKED.DAT, as well as the input file, DPO:MORPK2.DAT, are retained
: “ on disk after completion of the program so that, in subsequent program

executions, the selection and tracking procedures can be skipped and the

tracking results from the last execution of SELECT can be displayed
immediately upon request from the user.

DPO:TPARAM,DAT is another input and output file to SELECT and contains
both the default values of parameters used in tracking or displaying the data
and also the last used values of these parameters. The user, in the course of
processing the peaked spectral data, may change parameter values and generate
new tracked data using these new parameters. The parameter values used by the
program are saved to be available for use the next time the program is exe-
cuted if the user so desires. The default values are always saved to allow
the user to return to them whenever he wishes; however, the default values
themselves may also be changed by user request and the new default values will
be retained on file,

The first operation performed by SELECT is the display of the first thirty

slices of peaked spectral data. The program then waits for user instructions

80

via keyboard commands of the form given in the table which follows. Illegal
commands are ignored and the program waits for a legal instruction., All
commands begin with an alphabetic character. Some commands may consist of a

letter and one or two two-digit numbers, separated by a space as specified in
the table.

- Lore o m
P .U S SRS

.

~

- —-

P

T

M {

Command

M1

T

T2

Unn
Dnn

TABLE D1 - SELECT COMMANDS

Action
STOP; exit program

Mark or unmark the spectral
slice numbered n (max. 99)

Move marked slices from
DPI1.MORPK2.DAT to the file
DPO.TRKABL.DAT and display the
latter

Display the current contents
of DPO:TRKABL.DAT

Perform tracking on contents
of DPO:TRKABL.DAT

and store results on

DPO: TRAKED,DAT

Display tracking results
or erase them if already displayed

Erase everything else and display
only tracker results, or erase
them if they are already displayed

Produce hard-copy of current
display

Reinitialize display buffer and
reenter program logic by displaying
the beginning of DOP:MORPK2.DAT

Move current display up/down by
nn lines where nn is 2~digit entry

Re~display original time slices
from DOP:MORPK2,DAT

(refers only to MORPK2 data)
Mark or unmark the spectral
slices numbered nn through mm

Mark (or unmark) all spectral
slices in MORPKZ2.DAT

Use potentiometer to determine
frequencies

82

Subroutines Called

MARKIT

MOVEZ2
XPKDSP

XPKD3P

XSTR8S
XSETF3

XTDISP

XTDISP

XYPLOT

XPKDSP

Xup

XPKDSP
XTDISP
XPKDSP

BUNCH
XPKDSP

BUNCH
XPKDSP

POTTY

TABLE D1 - SELECT COMMANDS (Cont'd)

Command Action Subroutines Called

W Print spectral slice location WHERE
in original data

"BLANK" or <CR>®* Move display up or down accord- XBLANK
ing to default preset values

X Display parameters with options XADJST
to change them and then redisplay
tracks or spectral slices which-
ever were last displayed

B®carriage return A

b — - =

INPUT keyboard input

FORMAT (1A1, 12, 1X, 12)

CMAND1 - command letter
NUM1 - first two-digit numeral of command, if any
NUM2 - second two~-digit numeral of command, if any

OUTPUT None

SUBROUTINES CALLED XPKDSP
MARKIT
XSTR8S
XSETF3
XTDISP
XYPLOT
Xup
BUNCH
POTTY
XBLANK
WHERE
XADJST

CALLED BY None
SELECT is a program.
CALLING SEQUENCE None

84

A e e m———— - M e = e e

SUBROUTINE NAME XTDISP

PURPOSE To display tracks

DESCRIPTION Subroutine XTDISP displays the contents of the file,
DPO:TRAKED,DAT, within the spectral slice number and frequency bounds set up
by the user in other parts of program SELECT. This file contains all the
tracks found in the spectral data by the tracking routines. The track display
covers 30 spectral slices along the y-axis, increasing in index from the top
of the screen to the bottom. The starting spectral index of the display is
specified by BEGIN2, the argument to subroutine XTDISP. The frequency bounds
of the display are specified by the starting frequency ISTART, specified
earlier by the user and stored on file DPO:TPARAM.DAT, and by the window size
PTSDPY of the FFT's used to generate spectral data. PTSDPY is contained in
the 101st record of DPO:TRAKED.DAT. The maximum frequency possible is 9 KHz
since the sample rate of the raw acoustic data was 18 KHz. The internal size
of each power spectrum frequency bin is, therefore, 9000 (PTSDPY 2-1). The
lower frequency bound of the display is that bin containing the requested
start frequency, and the range of frequencies is 51 bins.

Subroutine XTDISP examines all tracks stored on file and displays all
parts of all tracks which intersect the bounds of the display. Tracks are
displayed by vectors between points where the slope of the track changes. The
track display is a subpicture with tag equal to 50.

INPUT
Arguments
BEGIN2 -~ spectral slice index for start of display
Files
DPO: TPARAM,DAT -~ ISTART (word #7 of record 1) lower frequency bound of

display
DPO: TRAKED.DAT - (unit 11) (FORTRAN direct access)
record #101

TRKTOT - total number of tracks
TOT99 - total number of spectral slices
PTSDPY - window size of FFT

record #n

track number n - list of frequency bin numbers read into THSTRK array

SUBROUTINE NAME XTDISP (Cont'd)

E QUTPUT Track display

i SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XTDISP (BEGIN2)

*

-

-~

.

86

-

- .- . .. - P
TR I RS SO Y

!

- T

4
9
3
»
¢
b

SUBROUTINE NAME XADJST

PURPOSE To display current or default program parameters and allow user to

change parame%ers via specified keyboard commands.

DESCRIPTION Seven parameters are used within program SELECT and retained on
disk file DPO:TPARAM,DAT. The first seven words of this file contain the
current "working" values of these parameters and the next and final seven
words contain default values for these same parameters. Subroutine XADJST
reads the values for the list of program parameters. The routine is called by
SELECT when prompted by the curser commands "X" or X1", If the second
character of the command is "1", XADJST sets the program parameters to the
default values retained on TPARAM.DAT. Otherwise, the parameters are set to
the "working" values currently on file. These may be values saved earlier in
the current execution of SELECT or in a preceding execution.

After the initial data input and assignments, the program variables and
current values are displayed, accompanied by a notaticn of the command
necessary to change each one.

XADJST then waits for a command from the keyboard; possible commands and
actions taken are:

F1 =N set FROGAP equal to N

K1 = N - change KNTLIM to N

Tt = N -~ change TRACKS to N
T2 = N - change TIMGAP to N

N N

N

IM = - change ISTART to

N1 = - change NUM1 to N

c - changes CMAND1, (If already equal to U, sets it to D and

vice versa)

X - erase display; save changes in working values only and
output all parameter values to file TPARAM.DAT and return

X1 - erase display; reset defaults to new working values;
output all values to TPARAM.DAT and return

- exit program
E1 - do same as X and X1, respectively, but exit program

instead of return.

SUBROUTINE NAME XADJST (continued)

INPUT
Arguments
NUMX - argument containing the second character entered by the user when
initiating the call to XADJST the number "1" is the only meaningful q
value and causes parameters to be set to default values,
File 4

DPO: TPARAM.DAT - (unit 98) (unformatted binary)
One record containing seven working parameter values and

seven default parameter values
OUTPUT
File
DPO: TPARAM.DAT - (cf above) on output, contains updated values
SUBROUTINES CALLED None
CALLED BY SELECT
CALLING SEQUENCE CALL XADJST (NUMX)

SUBROUTINE NAME Xup
PURPOSE To compute the index of the spectral slice which should appear at

the top of the display when a shift up or shift down command has been received.
DESCRIPTION The given shift number is added to or subtracted from (for

shift up or shift down, respectively) the index of the current slice at the
top of the display. If the shift number is zero, shift to the first spectral
slice for down shift and the spectral slice that is thirty from the last in

the case of up shift. Whenever the top index is within thirty of the end of
data, it is reset to the slice thirty from the end.

This routine handles both displays of the original spectral slices and
also selected slices and tracking results. The argument PNUM serves as a

means of indicaéing which type of data is referred to by the shift command.

INPUT
Arguments
PNUM - if equal to one, commands refer to original spectral slices;

otherwise, they refer to selected slices
BEGIN - index of spectral slice currently at top of display of original
spectral slices
BEGIN2 - in¢- ¢ of spectral slice currently at top of display of selected
slices
CMAND1 -~ Hollerith variable containing "U" or "D" to indicate direction
of shift
NUM1 - integer amount of shift
COMMON [CHUNKS] - contains NWINDS, the total number of spectral slices
OUTPUT
Arguments
BEGIN and BEGIN2 - new values
SUBROUTINES CALLED None
CALLED BY SELECT
}i | CALLING SEQUENCE CALL XuP (PNUM,BEGIN,BEGINZ2,CMAND1,NUM1)

- A e m——

89

SUBROUTINE NAME POTTY

PURPOSE To display a vertical cursor on screen controlled by the potentio-

meter for channel zero and to display in the console LED's the frequency value

of the cursor position on the frequency axis.

DESCRIPTION A vertical cursor, whose position is movable and depends on the

value of the A/D conversion of the signal in channel zero, is displayed. With
no signal physically plugged into the console in this channel, the signal
sampled is the potentimeter output which varies from 0 to 4096 digitally. An
18000~Hz sample rate is assumed for the spectral slice input data, and hence
frequency intervals on the horizontal axis equal 9000/PTSDPY/2-1), where
PTSDPY is the number of points taken in the FFT. The position’of the cursor
is converted to frequency and the frequency is displayed in the console LED's.
INPUT

Arguments

PTSDPY - number of points taken in FFT

File

DPO: TPARAM,DAT - (unit 98) (FORTRAN unformatted binary)

seventh word on 18t record is start frequency for display

OUTPUT frequency value of cursor position displayed in console LED's
SUBROUTINES CALLED None
CALLED BY SELECT
CALLING SEQUENCE CALL POTTY (PTSDPY)

90

Y

<

™

Vi o, g
T ~ . &

-l — R oo

AD-A141 575 PROGRAM DESCRlPTIONS FOR INTERACTIVE SIGNAL AND -PATTERN 2
ANALYSIS AND RECO..(U) DAVID W TAYLOR NAVAL SH
RESEARCH AND DEVELOPMENT CENTER BET. w PARSONS ET AL.
INCLASSIFIED MAR 84 DTNSRDC/CMLD-84-05

..... .

m

 EEE

AAd 3930443

==

B
i

7

Il

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I
I
[

e Ao g e e e e o e

’ P o e AT Y KRR

. e e e vy SR ™~

TTE

. . . s .
e e b e At e o ——— B e e e

- ——

-

SUBROUTINE NAME WHERE
PURPOSE For an indicated series of spectral slices in DPO:TRKABL.DAT, to

print out the absolute location of each in original peaked data MORPK2,DAT.
DESCRIPTION Subroutine WHERE begins at a specified record (spectral slice)
in DPO:TRKABL.DAT and reads a sequence of records corresponding to spectral
slices from TRKABL.DAT in order to print out the second word of each record
which contains the index of that record in the original data.

INPUT

Arguments

BEGIN2 - TRKABL.DAT index of first slice of display

NUM1 - index of first slice for which information is desired. This is
relative to display. Must be between 1 and 30.

NUM2 - index of last slice for which information is desired. Must be

between 0 and 30, If equal to zero, only NUM1th record is

srinted.
File
DPQO: TRKABL,DAT
OUTPUT

TTY - index relative to display and absolute index in DPO:MORPK2.DAT
for each spectral slice indicated by input
SUBROUTINE CALLED None
CALLED BY SELECT
CALLING SEQUENCE CALL WHERE (BEGIN2, NUM1, NUM2)

SUBROUTINE NAME XBLANK

PURPOSE To access fifth and sixth words on DPO:TPARAM,DAT and return values

through arguments.
DISCRIPTION Performs: READ(98) TRACKS, GROGAP,KNTLIM,TIMGAP,CMAND1,NUM1
and returns CMAND1 and NUM1 to calling routine. These are current working

values for the direction and amount of the automatic move commands,
INPUT

File

DPO: TPARAM.DAT - (unit 98)(FORTRAN unformatted binary) (Single record, cf
SELECT File Descriptions)

OUTPUT
Arguments
CMAND1 - from disk
NUM1 - from disk

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XBLANK (CMAND1,NUM1)

e o o en

SUBROUTINE NAME BUNCH

PURPOSE To change the display line type of a series of consecutive spectral

slices on DPO:MORPK2.DAT.

DESCRIPTION The first two arguments to BUNCH are the beginning and end

record numbers identifying a series of spectral slices on DPO:MORPK2.DAT.
BUNCH reads each of these records and changes the type of the base line
associated with each from solid to broken or broken to solid, depending on
what it is initially. The records with the new line types are replaced on

DPO:MORPK2.DAT. No display is changed.

INPUT
Arguments
NUM1 -~ begin and end absolute record numbers

NUM2 - of slices on MORPK2 to be changed
BEGIN - not used or altered
COMMON/CHUNKS/ cf MOVE 2
File
DPO:MORPK2.DAT
OUTPUT
DPO:MORPK2.DAT
SUBROUTINES CALLED None
CALLED BY SELECT
CALLING SEQUENCE CALL BUNCH (NUM1,NUM2,BEGIN)

|
|
|

SUBROUTINE NAME MOVE2
PURPOSE To transfer spectral slice data from DPO:MORPK2,DAT to
DPO:TRKABL.DAT for each slice chosen by an "A" command in the main routine,
DESCRIPTION Each record of DPO:MORPK2.DAT is read separately and the line
type indicator, LTYPE, (the first word of the record) is checked. 1If LTYPE=2,
the record is written out to the file DPO:TRKABL.DAT with the original record
number on MORPK2 added after LTYPE. The records written in DPO:TRKABL.DAT are
counted and the total is added to the list of data obtained from record number
1024 of MORPK2.DAT, to form record 1024 of TRKABL.DAT.
INPUT

COMMON /CHUNKS/ -~ contains NOP, the maximum number of peaks in each

spectral slice. Determines the record size on
DPO:MORPK2. DAT.
File
DPO:TRKABL.DAT - (unit 77)(FORTRAN direct access)
File containing peaked spectral slice data. Maximum
number of records is 1024; record size is NOP+i.
OUTPUT
File
DPO: TRKABL,DAT - (unit 99)(FORTRAN direct access)

File containing only selected spectral slices. Record

format same as MORPK2.DAT. except that record size is one
{ larger and original record number of the slice on MORPK2
A is added after LTYPE.

é SUBROUTINES CALLED None

R CALLED BY SELECT

: CALLING SEQUENCE CALL MOVE2

‘E 94

- —-—

©

———————— - & e A e e e

- ‘4
————— gy —

TN

SUBROUTINE NAME MARKIT
PURPOSE To change the base line of a designated spectral slice in the

current display from solid to broken or vice versa.

DESCRIPTION MARKIT changes the manner of display for a particular spectral
slice designated by the subroutine argument NUM1. NUM1 must refer to a
spectral slice on display and must be a positive number no greater than
thirty. The spectral slices on display are assumed to be from file
DPO:MORPK2.DAT which forms one of the primary input files to program SELECT.
The second argument to MARKIT, called BEGIN, identifies the first spectral
slice of the display as to its record number in MORPK2.DAT.

MARKIT locates the designated slice in the fil - MORPK2.DAT, reads its
associated data record, and changes the type indicator of the record from
solid to broken or vice versa. This type indicator specifies whether the base
line displayed for the spectral slice is solid or broken. When the type is
changed, the altered data 're replaced on the MORPK2.DAT file, The subpicture
associated with the spectrual slice is erased, recreated to blink for one
second, erased again, and finally recreated and displayed with the new line
type.

These operations are facilitated by creating each spectral slice as a
separate subpicture and using its index on the data file MORPK2.DAT as the

associated subpicture tag.

INPUT
Arguments
NUM 1 - index of designated spectral slice (relative to top of
display). (Must be no greater than 30).
BEGIN - record number of first spectral slice on display.

Record number refers to its position in DPO:MORPK2.DAT.
COMMON /CHUNKS/ - contains NOP, the maximum number of peaks in each
spectral slice
File
DPO:MORPK2DAT - (unit 77)(FORTRAN direct access) File containing data
for one spectral slice per record.
Each record consists of a base line type to determine solid or broken line
display (LTYPE=1 or 2) and a list of NOP numbers representing the frequency

bin numbers of peaks in the assoclated power spectrum.

95

SUBROUTINE NAME MARKIT (Cont'd)

OUTPUT
File
DPO:MORPK2.DAT -~ same as on input except that the line type for the
designated spectral slice is reversed -
SUBROUTINE CALLED None
CALLED BY SELECT s

CALLING SEQUENCE CALL MARKIT (NUM1,BEGIN)

SUBROUTINE NAME XPKDSP

PURPQOSE To display contents of file containing spectral slice to be tracked
or contents of file containing original output of peakpicking routine.
DESCRIPTION The arguments to subroutine XPKDSP specify the file of data to
be displayed and the spectral slice number within that file at which to begin
the display. The possible files are restricted to either the file of peaked
spectral slices input to program SELECT or the file containing the selected
spectral slices to be tracked. XPKDSP displays up to 30 spectral slices
beginning with the specified record. Fifty-one frequency bins are displayed
beginning at a user specified frequency obtained from disk file
DPO:TPARAM,DAT, The presence of a peak is indicated by an "X" in the
appropriate bin with frequency being the horizontal axis and slice number
along the vertical. The peak display for each spectral slice is a separate
subpicture whose tag is the index of the slice in the current display.

INPUT

Arguments

BEGIN - spectral slice number at which to start display
DNUMBR - indicator of input file to be used

Common

/ CHUNKS/ , NOP - the number of peaks per spectral line

Files

DPO:TPARAM.DAT - (unit98) (unformatted binary) A single 7-word record.
Word number seven, ISTART, contains frequency at which
to begin display.

DPO:TRKABL.DAT - (unit 99) File containing the list of peaks (frequency
bin numbers) for each spectral slice selected to be
tracked, cf XSTR8S

DPO:MORPK2.DAT - (unit 99) File containing the 1list of peaks for each
spectral slice output by the peakpicking procedures and
input to SELECT

OUTPUT Output restricted to creation of new display buffer contents
SUBROUTINES CALLED Calls only FORTRAN library and system graphics routines
CALLED BY SELECT

CALLING SEQUENCE CALL XPKDSP(BEGIN,DNUMBR)

97

.

e e A] e A—— — B o -

.
- T T T

N

- - -

¢

- vprae = .

SUBROUTINE NAME XSTR8S

PURPOSE For each frequency in the input power spectra, to determine the
spectral slices in which that frequency appears as a peak and the number of
consecutive slices in which it remains a peak.

DESCRIPTION Input for this routine consists of the file, DPO:TRKABL.DAT,
which contains the spectral slices of peaked data selected by the user in
routine MARKIT. Each record consists of a list of bin numbers of the power
spectrum peaks determined by the VU routine PEAKPK. The maximum number of
peaks per power spectrum is contained in a common variable NOP currently set
to ten,

XSTR8S searches each 1list of spectral peaks for the occurrence of each
possible frequency bin (max=250). The frequency bin number, the start index
in the spectral slices of its occurence as a peak, and the number of
successive slices containing the peak are output as a three-word record on the
FORTRAN direct access file DPO:SLINES,DAT. The maximum number of such records
is 1023. The 1024th and last record is used to output the actual number of
three-word records put on file. All frequency bins and all spectral slices
are checked until the maximum number of records on SLINES.DAT is found.
INPUT

NOP -~ (in COMMON /CHUNKS/) max. number of peaks per power spectrum

DPO:TRKABL.DAT - (FORTRAN unformatted direct access file)

The file containing peaks (frequency bin numbers)
determined in each of the selected power spectra. There
are 1024 records of length NOP+2.

Typical record: LDUMY - value not used in XSTRPS

LINUM - index of spectral slice in MORPK2.DAT
PEAKPS - vector of bin numbers (in increasing order) of
peaks in the associated power spectrum., NOP

maximum, with zero fill.
Last record: (5 values)

ZSTART

ZMOVE cf SELECT File Descriptions
NWINDS

PTSDPY

TOT99 - number of spectral slices on file

98

PR, |~ - PV 5 S S

SUBROUTINE NAME
OUTPUT
DPO:SLINES.DAT

Typical record

Record #1024
SUBROUTINES CALLED
CALLED BY SELECT
CALLING SEQUENCE

XSTR8S (Cont's)

~ (FORTRAN unformatted direct access file; 1024 records
of size=3 words)
- LSTR8 (1) = frequency bin number
LSTR8 (2) - spectral slice index of start
LSTR8 (3) - number of consecutive slices with peak in
this bin
- actual number of typical records

None

CALL XSTRS8S

99

SUBROUTINE NAME XSTAR

PURPOSE To find a region in which to begin tracking where peaks are stable
over several spectral slices.

DESCRIPTION XSTAR examines a specified triple in the file, DPO:SLINES.DAT,
generated by XSTR8S in order to find an area where peak data are either un-
changing or change very little over several consecutive spectral slices. Such
a region is the start point for frequency tracking performed by subroutine
XSETF3,

If the length of the constant frequency exceeds an input threshold
(KNTLIM), the area described by the triple is called a vertical stable region,
and the frequency bin number and index of the middle spectral slice are
returned by XSTAR as the start of a track. If the length of the constant
frequency does not exceed the stability threshold, XTSTAR tests for a diagonal

region about the frequency and spectral slice obtained from SLINES.DAT.

XTSTAR first searches succeeding spectral slices for an occurrence of a
frequency bin peak no more than one bin away from the peak in the preceding

k slice., XTSTAR will do this search as far as it can, return to the start

' point, and perform a similar search backwards over spectral slices. The

region is bounded by spectral slices whose closest peaks to the last frequency

bin of the run differ by more than one, If the length of this "diagonal"

region exceeds KNTLIM, the frequency bin and slice number of the midpoint are
returned by XTSAR as a track start point.

If neither vertical region or diagonal regions are found, a start failure
indicator 1is returned.
INPUT

-

Arguments

KROW - XSTR8S triple index

TOT99 -~ number of spectral slices on the file TRKABL.DAT
KNTLIM - minimum length of stable start threshold
DPO:SLINES.DAT cf. XSTR8S output

100

SUBROUTINE NAME XSTSAR (Cont'd)

OUTPUT
Arguments
BFREQ -~ frequency bin number of start of track
TIMBEG - index of start spectral slice
LGENUF - track start indicator

=1 - vertical region
=2 - diagonal region
=0 -~ no start

SUBROUTINES CALLED XNEARP
CALLED BY XSETF3
CALLING SEQUENCE CALL XSTAR (KROW,TOT99,KNTLIM,BFREQ, (BLG,LGENUF)

[P,

e i ——— -

101

SURBROUTINE NAME XSETF3
PURPOSE To perform tracking of frequency peaks throughout the selected

spectral slices.

DESCRIPTION XSETF3 is the master tracking routine which makes all necessary

file assignments, accesses tracking parameters, performs datal/O, and
sequences routines to track frequency peaks throughout the ensemble of
spectral slices selected as input by program SELECT. XSETF3 calls subroutine
XTSTAR to find a stable region where it begins tracking at the middle spectral
slice.

Tracking per se is accomplished by incrementing spectral slice indices by
one, first going in a forward (+1) direction, then by returning to the start
point and proceeding backwards (increment=-1). XSETF3 calls subroutine XNEARP
to find the frequency bin in the next spectral slice which is closest to the
current track frequency. If the change in bin numbers returned by XNEARP is
within the frequency jump threshold (FROGAP), the new bin number is added to
the track. If the FROGAP threshold is exceeded, XSETF3 looks ahead at
successive spectral slices to see if the current frequency picks up again. If
the peak resumes (within FROGAP) within the next TIMGAP slices, the track is
continued and the gap is filled by a straight line interpolation between the
existing bin numbers as provided by subroutine XINTER. Failure of the peak to
resume within this TIMGAP interval signals the end of the current track.

Track data are stored in a 512-word vector, THSTRK, such that the content
of THSTRK(I) is the frequency bin number for the spectral slice index, I.
Spectral slices in which the track doesn't exist are designated by -1's in the
corresponding THSTRK elements. The entire THSTRK vector for each separate
track is stored on the disk file DPO:TRAKED.DAT, which has been set up to hold
a maximum of 100 tracks. Before being stored, each track is compared to all
other stored tracks by subroutine XMATCH. Duplicate tracks are not stored.
The fact that duplicates are not determined until the end of a track, and the
fact that two different tracks which intersect each contain the entire dup-
licated segment, represent significant shortcomings in this tracking scheme,

A flowchart for XSETF3 is contained in Figure 20.

102

SUBROUTINE NAME XSETF3 (Cont'd)
INPUT
COMMON /CHUNKS/SEGSIZ,NOP
SEGSIZ - not used
NOP - maximum number of peaks per spectral slice
DPO:TPARAM,DAT =~ (unit98) (unformatted binary) A single four-word

record containing the current values for tracking

parameters and thresholds

TRACKS - number of tracks requested

FROGAP - frequency jump threshold

KNTLIM - length threshold for stable region in which to start
track

TIMGAP - spectral slice gap threshold for interpolation

DPO:SLINES.DAT - (unit88) (unformatted FORTRAN direct access) Contains
line tracks of constant frequency; cf XSTR8S output

DPO:TRKABL.DAT - (unit 99)(unformatted FORTRAN direct access) Contains
lists of peaks for each spectral slice; cf, XSTR8S input

OUTPUT

DPO:TRAKED,DAT - (unit11) (unformatted FORTRAN direct access) Contains
all separate tracks through ensemble of spectral peaks
up to TRACKS, the maximum number requested (100 max.).

There are 101 records of 512 words each. !

Typical record
(THSTRK (i),i=1,512) - list of frequency bin numbers or =1 if no track
element exists in the spectral slice of corre-
, sponding index
Record #101: (6 words)
TRKTOT - number of separate tracks on file
TOT99 - number of spectral slices
PTSDPY
ZSTART cf. SELECT File Descriptions
ZMOVE

NWINDS {

SUBROUTINE NAME XSETF3 (Cont'd)

SUBROUTINES CALLED XTSTAR
XNEARP
XINTER
XMATCH

CALLED BY SELECT
CALLING SEQUENCE CALL XSETF3

104

ASSIGN ALES GET TOTS9-#
SPECTRAL SUCES
LASTT-# WAS OUT FROM
SSTRBS
TRACKS DESIRED &
TEACHING PARAMS.

} —

® INCREMENT TRACK ygs &0 STORE TAB # TRACKS W!

TOT98, DTSOPY, ZSTART

COUNTER HAVE REACHED el f | .
ZMOVE ZWINDS ON RECORD

[DESIRED # TRACKS? #101 OF UNIT 11

3 NO

INCREMENT REC. # CLOSE FILES 11, 88, 99

= GET TRACK START
RETURN

XTSTAR

YES_ StaRT TvPe 07

IND START THIS ROW)
NO

STORE BIN # AND
SLICE # OF
"START" OF TRACK

SET INCREMENT T0 -1 SET INCREMENT TD +1 FOR
RESET SLICE # 7O “START” FORWARD TRACKING

SPECIAL CASE (LAST YES SLICE # AT BOUNDS OF
SPECTRAL SLICE (1 QR ~ === PEAKED DATA? re—
T70799): ADD CLOSEST BIN IN 11 OR T07%9)
LAST QNE 1 MINDIF<FROGAP
, OTHERWISE. ADD -1 10 NO

T
LAST POS. IN THSTRK ARRAY GET CLOSEST BIN IN NEXT (SLICE #=LAST PT. TRACKED)
SPECTRAL SUICE IXNEARP)

NO »

‘ 5 DIFFERENCE IN BIN #S N

IMINDIF=FROGAP (GAP =t ADD NEW BIN # 70 TRACK
YES THRESHOLDY? INCREMENT SLICE #
0ONE)

YES {DISCONTINUOUS TRACK)

DOES TRACK PICK UP AGAIN YES
((MINDIF <FAQGAR T0 LAST § ————dm INTERPOLATE OVER GAP & o]

Al iCE #
BIN #]| BEFORE TIMGAP SLICES? ADVANCE Stice
NO

END TRACK FILL REST OF
TRACK ARRAY W/ -1'S
USING CURRENT INCREMENT

YES
IS INCREMENT = +1

;‘l NO MC=-1
'

(TRACK COMPLETE &
ENTERED IN THSTRK ARRAY)
CHECK TO SEE IF IT
DUPLICATES PREVIOUS
TRACK

XMATCH
¥E
S THIS TRACK A

{FORGEY DUPLICATE? j
o

STORE 1
PUT THSTRK IN UNIT 11
=0PO: TRAKED+DAT

Figure 20 -~ Subroutine SETF3 Flowchart

105

e A o

T —

~

~

SUBROUTINE NAME XNEARP

PURPOSE To locate the peak closest to an input frequency bin number and
compute the absolute difference in bin numbers for a given spectral slice.
DESCRIPTION XNEARP is called with two input arguments containing the index
of the desired spectral slice and the number of the basis frequency. XNEARP
reads the peak bin numbers for the spectral slice from the direct access file
DPO: TRKABL.DAT. 1If there are no peaks in the spectral slice, bin number zero
is output as the closest peak with absolute difference equal to 32000, If
there are peaks, the closest bin number is selected and the absolute differ-
ence computed.
INPUT

Arguments

FREQ ~ input (base) frequency bin number

TSLICE - index of spectral slice data to be examined

DPO: TRKABL.DAT - cf. XSTR8S, Input
QUTPUT

Arguments

NFREQ ~ bin number of closest peak in given spectral slice

MINDIF - absolute difference in frequency bin numbers, /FREQ-NFREQ/
SUBROUTINES CALLED None
CALLED BY XTSTAR, XSETF3
CALLING SEQUENCE CALL XNEARP (FREQ, TSLICE,NFREQ,MINDIF)

SUBROUTINE NAME XINTER

PURPOSE To interpolate frequency bin numbers over a gap in a frequency
track.
DESCRIPTION Subroutine XINTER has as input a partial track of frequency
peaks which has a gap or interval of spectral slice indices without any peaks
belonging to the track, The indices bounding this interval are input to
XINTER along with the frequency bin numbers in the track at those indices.
XINTER determines the change in bin numbers divided by the difference in
indices and, using this value as the slope of a straight line between twc
points, computes the frequency bin determined by that line at each intervening
index and adds it to the track. Bin numbers are computed in flocating point
arithmetic and rounded to the nearest integer.
INPUT

Arguments

THSTRK ~ a 512-word vector containing the partial track

FREQ ~ old bin number

TIMPTR - o0ld spectral slice index

NFREQ ~ new bin number

TPR - new spectral slice index
OUTPUT
Arguments
THSTRK - a 512-word vector containing augmented frequency track

SUBROUTINES CALLED None

CALLED BY XSETF3

CALLING SEQUENCE® CALL XINTER (THSTRK,KTRAK, INC,FREQ, TIMPTR,NFREQ, TPR)
#Note: Arguments KTRAK and INC are not used.

107

=T T T TR RN e TR

- . - f ..
e e ot A ol e e o B o m o — e~

.

SUBROUTINE NAME XMATCH

PURPOSE To compare the input track to all tracks already obtained to check
for duplicate tracks.
DESCRIPTION The current track, as input to XMATCH, is contained in a 512-
word vector and all tracks previously obtained are stored on disk. XMATCH
reads in each track from the disk file into another vector, local to XMATCH,
and simply compares the two vectors word-by-word. If the current track
matches no stored track, the total number of tracks is incremented and a no-
duplicate indication is returned. If the current track does match a previous
track, the current track index is decremented and a duplicate indication is
returned to the calling program.
INPUT

Arguments

THSTRK -~ vector containing current track

TOT99 maximum number of spectral slices in input data

KTRAK - index id of current track

TRKTOT -~ current total number of different tracks on file
DPO:TRAKED.DAT -~ cf XSETF3, output
QUTPUT
Arguments
TRKTOT - new total of different tracks on file
DUPE - LOGICAL * 1 variable which is true only when input track
duplicates a previously stored track
SUBROUTINES CALLED None
CALLED BY XSETF3
CALLING SEQUENCE CALL XMATCH (THSTRK, TOT99,KTRAK, TRKTOT, DUPE)

108

e A - e

SELECT FILE DESCRIPTIONS
DPO:MORPK2, DAT
DESCRIPTION MORPK2.DAT is the spectral data input file to program SELECT
generated by program VU. It contains a maximum of 1023 spectral slices, each
of which consists of a list of frequency bin numbers of peaks in an associated
power spectrum. An additional record on the file contains specific parameter
information concerning the power spectra taken in VU.
TYPE MORPK2.DAT is a FORTRAN unformatted direct access file,
CONTENTS
Records - 1023: LTYPE, (PPDAT(I),I = 1,10)
LTYPE - integer equal to 1 or 2 to specify type of baseline (solid
or broken) used to display spectral slice
PPDAT - list of integer frequency bin numbers
Records - 1024: ZSTART, ZMOVE, NWINDS, PTSDPY
ZSTART ~ floating point value of start point in raw data file of

first power spectrum

ZMOVE - floating point value of the jump in number of points
between power spectra

NWINDS - integer value of the total number of spectral slices on
this file

PTSDPY - number of points taken into consideration for each power
spectrum

109

DPO: TPARM,DAT

DESCRIPTION TPARAM.DAT is an input/output file which contains the working
values and default values of the seven user modifiable parameters to program
SELECT,
TYPE TPARAM,DAT is an unformatted binary FORTRAN file.
CONTENTS "
Words 1-7 are integer values of the working parameters.
TRACKS - number of tracks requested .
FROGAP -~ frequency jump threshold
KNTLIM - track length start threshold
TIMGAP - spectral slice gap threshold
CMAND1 - automatic move direction (up, down)
; NUM1 - amount of automatic move
i ISTART - lower frequency bound for displays

Words 8-14 contain the integer default values of the same parameters.

DPO:TRKABL.DAT
DESCRIPTION TAKABL.DAT is the file containing the spectral slice data from
MORPK2.DAT which have been selected for analysis by the tracking procedures,
TYPE TRKABL.DAT is a FORTRAN unformatted direct access file,
CONTENTS f
Records 1-1023: LTYPE, LINUM (PPDAT(I), I=1, 10)
LTYPE - an integer 1 or 2 to specifying whether the baseline used to
display the spectral slice is solid or broken line
LINUM - integer spectral slice index in MORPK2.DAT

PPDAT - list of integer frequency bin numbers
Record 1024: ZSTART, SMOVE, NWINDS, PTSDPY, TOT99

The first four values are same as for MORPK2,DAT

TOT99 - number of spectral slices in TRKABL.DAT

110

LA

s
— e mm=

DPO:TRAKED, DAT
DESCRIPTION TRAKED.DAT is the file containing all tracks generated by the
tracking procedures operating on spectral data contained in CPO:TRKABL.DAT.
The number of tracks is limited to the smaller of a user specified limit,
TRACKS, contained in TPARAM,DAT and 100, the programmed size limit for
TRAKED. DAT,
TYPE TRAKED.DAT is a FORTRAN unformatted direct access file,
CONTENTS

Records 1-100: (THSTRK(I), I = 1, 512)

TH5TRK - 1list of bin numbers representing peaks in the track or -1

where no track element exists in the spectral slice of

corresponding index
Record 101: TRKTOT, TOT99, PTSDPY, ZSTART, ZMOVE, NWINDS
(ef. TRKABL.DAT and MORPK2,DAT)
TRKTOT - actual number of tracks on file

DPO:SLINES.DAT
DESCRIPTION SLINES.DAT is a scratch file used by the tracking procedure in
the track start testing. SLINES.DAT stores all areas of straight line tracks,
i.e., identifies regions in which a constant peak exists,
TYPE SLINES,DAT is a FORTRAN unformatted direct access file,
CONTENTS
Records 1-1023: (LSTR8(I), I =1, 3)
LSTR8(1) = frequency bin number
LSTR8(2)
LSTR8(3)
Record 1024 - actual number of LSTRS |

]

i

spectral slice index of start

number of consecutive slices with a peak in this bin i

111

TR TN TR TR EEEREERT T R e

SELECT LINKING PROCEDURE

The necessary command to link program SELECT on the PDP 11/45 is shown in
Figure 21,

. RUN LINK

#DPO:SELECT, SELECT=DPO: SELECT, SY: VTLIB, LPSLIB, SYSLIB/F/C
DPO:MARKIT/0:1/C
DPO:MOVE2/0:1/C

DPO: XPEAKS/0:1/C

DPO: XSTR8S/0: 1/C

DPO: XSETF3/0:1/C
DPO:XSTAR, XNEARF/0:2/C
DPO: XINTER/0:2/C

DPO: XPLOT, XYHDLR/0: 2/C
DPO:BUNCH/0:2/C
DPO:XBLANK/0:2/C

DPO: POTTY/0:2/C

DPO: XTDISP/0:2/C
DPO:WHERE/0:2/C

DPO: XMATCH/0:2/C

DPO: XUP/0:2/C

DPO:XADJST/0:2
#

Figure 21 - Program SELECT Linking Procedure

112

PROGRAM WAVAN
WAVAN is a syntactic pattern learning/classification system for processing
one~dimensional signal waveforms., These waveforms are strings of symbols
drawn from a given alphabet (e.g., RISE, FALL, LEVEL), each with associated
parameters (like intensity, frequency, duration, decay time) derived from such
routines as found in program VU discussed in the first section of this report.
The functional overview of WAVAN is contained in the ISPARS User's Guide.1

This section details the program description, input/output, files, and linking
procedure for WAVAN,

WAVAN SUBROUTINE DESCRIPTIONS
i SUBROUTINE NAME WAVAN

PURPOSE To initiate waveform analysis learning or classification subsystem
as specified by the user,
DESCRIPTION WAVAN is a GIRL program5 which first initializes variables and
arrays associated with the wave feature transition graph data structure and
tests keyboard input to determine the type of waveform processing to be per-
formed. The user first specifies whether processing is to be in the test or
train mode. In the test mode, WAVAN immediately reads from disk the stored
feature graph and the current states of the associated variables. The wave-
form data to be classified are then read and subroutine TEST is called to
perform the classification.
INPUT

Keyboard

YES or NO to test question

; YES or NO to create question if previous answer NO
i Disk '
i i DPO:WVTREE.NEW - File containing waveform feature transition graph; if
not, create run

,‘ DPO:SIGDAT.NEW ~ File containing test or training signal waveforms
OUTPUT

Test signal classification if in test mode

Disk:

DPO:WVTREE.NEW -~ Updated waveform feature transition graph if in train mode
i’ CALLED BY (This is a main program - not called by any other.)
! SUBROUTINES CALLED
N GROW
‘ TEST

LVFECH
LvDUMP

GIRS I/0 routinesu

114

SUBROUTINE NAME GROW

PURPOSE To create/augment the waveform feature transition graph and library
of average waves for a given event,
DESCRIPTION Subroutine GROW calls WIWAV and DESCEN to assign feature
weights and reorder the feature string according to confidence (weight).
Features from the recorded sequence are taken one by one to form partial
strings, each with a cumulative confidence. When the confidence of a partial
string exceeds a threshold, the last feature added is added as a link in the
feature transition graph u.d the event represented by this feature is added to
a list tied to the graph at this point. If the event is already on the list,
its associated confidence (also on the list) is increased and the temporal
position average for the feature is updated. This average associates a
: relative time of occurrence with each feature. When the sample fegture string
for an event is exhausted, GROWAV is called to store the wave data for the
event in the waveform library on disk,
INPUT

Arguments

EVNTID - id number of sample event in event dictionary

Common /FEATUR/

MLAS - array of triples, each representing a waveform feature
NFORMS -~ length of MLAS
/PRMTRS/ -~ list of parameters to be used in GROW and GROWAV

/WORDS/ - list of random numbers associated with dictionary events for
: use in GIRL graph

/ TRE/ - list of random numbers associated with content and structure of
GIRL graph structure used for storage of feature transition
graph

OUTPUT Modified feature transition graph

CALLED BY WAVAN

SUBROUTINES CALLED WIWAV, DESCEN, GROWAV, STRING
CALLING SEQUENCE CALL GROW (EVNTID)

115

SUBROUTINE NAME GROWWAV

PURPOSE To generate a list of different average waves representing a given

event.
DESCRIPTION GROWAV obtains the node containing the list of representative
waves for a given event and calls COMPWV to compare a new (input) wave with
each stored wave on the list., COMPWV returns the identity of the closest
match and, if the score of the match is acceptable, GROWAV averages the new
wave with the specified matching wave on the list and replaces the stored wave
with the new average. If the score of match is not acceptable, the new wave
is added to the list as a new representative wave for the given event,
INPUT

Arguments

EVNTID - event id

Common /WORDS/

WORDS -~ array of random numbers forming nodes in GIRL graph data base
representing each event
Common /WAVFRM/
WAVPTR - next available block on disk file DPO:WAVDIR.NEW for storing
waves

OuPUT Updated or averaged waveforms stored on GIRL graph data base
CALLED BY GROW
SUBROUTINES CALLED

COMPWYV

OUTWAV

GETWAV
CALLING SEQUENCE CALL GROWAV (EVNTID)

116

-

SUBROUTINE NAME TEST

PURPOSE To classify a test waveform by generating an ordered list of

possible identifications,

DESCRIPTION The test waveform string is recorded and processed in order of

individual wave feature reliabilities. The recorded string of features is
compared with a stored syntax of wave features characteristic of the library
of stored waveforms. Cumulative confidences are maintained as the syntax is
traversed, and when confidence thresholds are exceeded, a list of possible
matching library elements (called candidates) is formed. If the principal
confidence thresholds are not exceeded, a backup (temporary) list of candi-
dates exceeding a lower threshold is also maintained. If the candidate list
is too large (> WTHRES), subroutine TESTWV is called to compare waveforms more
closely and reorder the list; the top WTHRES candidates are returned as
output. If the candidate list is toc short (< WTHRES), the temporary list is
used to augment the candidate list. If no valid candidates are found,
subroutine WAVES is called to compare the test wave with the entire library.
Figure 22 contains a flowchart for subroutine TEST,
INPUT

Ar gument

MLAS - test waveform array

NFORMS - length of MLAS

DISK

DPO:WVTREE. NEW - contains the GIRL graph storing the waveform syntax and

also the variables associated with the graph

QUTPUT

Common /MATR/

MATCH - vector of id numbers of wave matches

MATES -~ number of matches

CONMAT - vector of confidences of assoclated matches
CALLED BY This is called by main program.

117

SUBROUTINE NAME
SUBROUTINES CALLED

WIWAV

DESCEN

MAXSTK

TESTWV

WAVES

SETLIB

STRING

GIRS routines
CALLING SEQUENCE CALL TEST (MLAS, NFORMS)

TEST (Cont'd)

FETCH FEATURE,
WAVEFORM TREES
FROM DISX

(LVFECH)

]

WEIGH SIGNAL
FEATURES R AND
* ORDER BY DESCENDING
WEIGHT (WTWAV,
DESCEN)

_ v

INITIALIZE NODE STACK
STACK AT TOP OF
FEATURE TREE

R

s LR

POP NODE T FAOM STACK |

G)——lj

—
{ w0]

NO RELIABLE
CANDIDATES

Yes
< STRING FEATURES EXHAUSTED? H——e-

BRI

COMPUTE CONFIDENCE
CRSA {F; Al A2}

L Q CASA > THRSHA? _> -

T

TRANSITION FROM T TO TA BY R I

] o L
< TRANSITON EXISTS? >

1 , § vis

PUT TA AND TRANSITION NODES OF
‘ ALTERNATES 10 Fi ON STACK N
DESCENDING ORDER OF CRSA
{MAXSTK)

GET CANDIDATE SIGNAL WORD FROM
SIGNAL LIST ATTACHED T0 TOP

-—1

TEMP EMPTY?

USE WAVES 10
COMPARE TEMP
WITH COMPLETE
WAVEFORM TREE

STACK NODE
! ves
T
K3
C
I
r COMPUTE RELIABILITY IRELT (WORDY j
3 N
4 IRELT > THRESHE? >

Tves. VALID CANDIDATE

PUT ON CANDIDATE UST CAND
ACCORDING TO WRELT

119

Figure 22 - Subroutine TEST Flowchart

e

; CAND LIST COMPLETE

(CAND[>WTHRESH? >
/ No

‘ YES

MORE FEATURES OF WEIGHT
EQUAL TO F?

YES NO

Y 1

MATCH CAND AGAINST
WAVEFORM TREE AND
REDUCE |CAND|-(TESTWV)

Y

| YES CAND EMPTY? }-J

v NO

MERGE CAND, TEMP ONTO
TEMP BY IRELT ORDER.

N ACCEPT UP TO WTHRESH CANDIDATES ON

R TEMP WHOSE IRELT'S ARE AT LEAST 50%

OF MAXIMUM RELT ON TEMP, WRITE TEMP
. LIST INTO MATCH; IRELT'S INTO CONMAT:

{TEMP| INTO MATES.

(y 1

} END

. / Figure 22 - Subroutine TEST Flowchart (Cont'd)

SUBROUTINE NAME TESTWV

PURPOSE To compare waveforms of all elements on candidate list to test form

and save list matches on a final candidate list.

DESCRIPTION A 1list of candidate matches is supplied to TESTWV, and TESTWV
calls COMPWV to compare candidate forms to the test form and score the match.
The candidates are recorded on a temporary list in order of scores and the
best matches (number equal to an input parameter, WTHRES) are re-created on
a new candidate list.

INPUT
Arguments
MLAS -~ test waveform string
NFORMS - length of MLAS
Other

Candidate list contained in the GIRL graph linked to the node CAND by LIST
and RELIST, CAND, LIST, RELIST contained in COMMON/TRE/.
OUTPUT Revised candidate list contained in the GIRL graph
CALLED BY TEST
SUBROUTINES CALLED COMPWV
GIRS routines
CALLING SEQUENCE CALL TESTWV (MLAS, NFORMS)

SUBROUTINE NAME WAVES

PURPOSE To cycle through entire library of stored waveforms to compare each
with a given test form.

DESCRIPTION WAVES cycles through the vocabulary of stored waveforms,
obtains the head node of associated waveforms, and calls subroutine COMPWV to
compare stored forms with test form input to WAVES. Stored forms whose score
is below a program threshold are retained on a candidate list of matching
forms,
INPUT

Arguments

MLAS - waveform string

NFORMS - length of MLAS
OUTPUT Candidate list in GIRL graph of matching forms and score for match
CALLED BY TEST
SUBROUTINES CALLED COMPWV

GIRS routines

CALLING SEQUENCE CALL WAVES (MLAS, NFORMS)

SUBROUTINE NAME MAXSTK

PURPOSE To put a node on the stack such that the stack lists items in order
of decreasing confidence.

DESCRIPTION The 1ist attached to STACK by the RELIST link is scanned until

an element is found whose confidence is below that of the input item; the new

item and its confidence are added to the list at this point.

INPUT

Arguments

TA ~ form to be added to stack

CRSA -~ confidence associated with this node

I - position of the form in original waveform

GIRL waveform graph
OUTPUT Updated GIRL waveform graph
CALLED BY TEST
SUBROUTINES CALLED GIRS system routines
CALLING SEQUENCE CALL MAXSTK (TA, CRSA,I)

122

SUBROUTINE NAME COMPWYV

PURPOSE To compare an input wave to each wave associated with an input node.
DESCRIPTION COMPWV first condenses the input wave by eliminating levels as
Separate forms and adding the duration of levels to the duration of the pre-

ceding form. The same thing is done for forms representing small changes.
The condensed wave is compared to each stored wave form by form. If forms do
not agree, COMPWV attempts to either stretch or compress the input form to
achieve agreement. Forms agreement is measured by the in-line function,
DELTST, which is a weighted average of the difference in level, decay time,
and duration. These three differences are also summed over all forms for use
in a scoring function to determine the measure of match between the input and
stored waves. This score is also an in-line function, SCORIT, computing a
weighted average of the difference sums. Stretching is achieved by repeating
; a waveform, and compression is achieved by deleting a waveform and either case
v is accompanied by appropriate modification to the differences and difference
sums.
INPUT
| Arguments
: NODE - random number associated with node in wavegraph to which library

(stored) waves are linked

PREV - current best score in waveform comparisons
MLAS - input wave form vector
NFORMS - number of form in input wave

TSTING - true for test mode, false for training
Other

GIRL graph storing waveform data base
OUTPUT
Arguments
PREV - score for this wave comparison if stored wave resulted in better
score than previous best
CHOI - index of form on input node list that corresponds to output score
Common /AVWAV/
AVLEN -~ length of condensed form
AVWAV ~ new wave generated by compressing/stretching

123

SUBROUTINE NAME COMPWV (Cont'd)

CALLED BY
WAVES
TESTWV
GROWAV ¢
SUBROUTINES CALLED GETWAV
GIRS routines L
CALLING SEQUENCE CALL COMPWV (NODE, PREV, CHOI, TSTING)

124

{
!

SUBROUTINE NAME DESCEN

PURPOSE To determine that permutation of subscripts which reorders elements

of the feature string in terms of decreasing confidence (weight).
DESCRIPTION The weight vector associating weights or reliability measures
with the string of feature elements is scanned repeatedly for highest weight;
each time the index is added to the permutation matrix REORD.
INPUT '

Common /FEATUR/KLAS (768,3), NFEAT

/WEIGHT/WT(768)

where

KLAS is feature string of up to 768 features

NFEAT is number of features in string

WT is vector of associated feature weights
OUTPUT REORD - vector of permutation of weight indices (argument to DESCEN)
CALLED BY

GROW

TEST
SUBROUTINES CALLED None
CALLING SEQUENCE CALL DESCEN (REORD)

125

SUBROUTINE NAME WIWAV

PURPQSE To assign weights to feature string (waveform) elements.
DESCRIPTION Zero weights are assigned to the first and last form (features)
in the string. The weights for rises or falls are
2048 (D)/M
where D is the absolute change in level for this form and M is the maximum of
D for all rises and falls in the string. The weight for a level is
2048 (L)/G

where L is the duration of the level and G is the maximum G for all levels.
INPUT

Arguments

MLAS - waveform string

NFORMS - length of MLAS
OUTPUT

Common

WT - vector of weights associated with MLAS
CALLED BY

GROW

TEST
SUBROUTINES CALLED None
CALLING SEQUENCE CALL WIWAV (MLAS, NFORMS)

INTEGER FUNCTION STRING

PURPOSE To determine the GIRL graph link to be associated with a given form
(feature).

DESCRIPTION The value of the function STRING is set to the GIRL link random

numbers RISE, FALL, or LEVEL to correspond to the type of form referred to by
the input argument, K.

INPUT
Arguments
K - form pointer

MLAS -~ vector of waveforms
Common /TRE/
RISE, FALL, LEVEL - random numbers identifying links associated with
waveform types
OUTPUT STRING (K, MLAS) = either RISE, FALL, or LEVEL depending on the type
of the kth waveform
CALLED BY
GROW
TEST
SUBROUTINES CALLED None
CALLING SEQUENCE CALL STRING (K, MLAS)

SUBROUTINE NAME GETWAV

PURPOSE To read a waveform from disk library into program array.
DESCRIPTION GETWAV reads PDP-11 System Library of binary data from disk
using channel and block index supplied to it through arguments,

INPUT
Arguents
INDEX - block number index of desired waveform on disk
ICH - channel number assigned to waveform input file *
DISK
DPO:WAVDIR.NEW - binary file containing directory of stored waveforms,
First two words are number of forms and total decay. H
OUTPUT
Common /WAVFRM/
SLNGTH - length of stored waveforms
DECAY - total decay of waveform

STDWAV(I, 3) - stored waveform
CALLED BY CPMPWV
SUBROUTINES CALLED IREADW of PDP-11 SYSLIB
CALLING SEQUENCE CALL GETWAV (INDEX, ICH)

128

e m e e e

SUBROUTINE NAME OUTWAV

PURPOSE To store waveforms on disk.
DESCRIPTION OUTWAV performs a PDP-11 System Library write to disk using
channel number and block index supplied as arguments,
INPUT
Arguments
INDEX - block number of desired waveform on disk
ICH ~ channel number assigned to waveform directory file
Common /WAVFRM/
SLNGTH - length of waveform array
DECAY - total decay for waveform
STDWAV - stored waveform
OUTPUT
DISK
DPO:WAVDIR.NEW - binary file containing directory of stored waveforms
CALLED BY GROWAV
SUBROUTINES CALLED None
CALLING SEQUENCE CALL OUTWAV (INDEX, ICH)

SUBROUTINE NAME SETLIB
PURPOSE To set up file definitions for use within rest of program.
DESCRIPTION PDP-11 System Library functions are used to establish the file

DPO:WAVDIR.NEW - create it if this is a "create™ or "test" run or find it if
this i{s an "update" run. In addition, logical unit number 99 is assigned to
DPO:WVTREE. NEW,
INPUT

Arguments:

CREATE - logical variable set to .TRUE. for create run, .FALSE. for update

run

NBLKS -~ number of blocks to request for each record or waveform on disk
OUTPUT None
CALLED BY WAVAN
SUBROUTINES CALLED PDP-11 SYSLIB
CALLING SEQUENCE CALL SETLIB (CREATE, NBLKS)

129

WAVAN FILE DESCRIPTIONS
DPO:WVTREE, NEW
DESCRIPTION WVTREE.NEW is the file containing the waveform feature

transition graph and related variables. It is strictly an output file when
WAVAN is executed in the "create" training mode. It is both an input and an .
output file in the training update mode, and only an input file in the test
mode,
TYPE WVTREE is a FORTRAN unformatted binary file
CONTENTS The contents of WVTREE are read by a call to LVFECHu.
r The last logical record on the file contains program parameters related to
the graph data and is read as follows:
READ (99) FORMNT, WAVPTR, WAVE, INAV, TREE, LIST, NUM, DICTSZ, WORDS,
RISE, FALL, LEV, PLACE, AELIST, TEMP, CAND, STACK
where
WORDS is dictionary of random numbers corresponding to events being
classified by the graph. Current program limits number of events to

twenty.

DPO:WAVDIR, NEW
DESCRIPTION WAVDIR.NEW is a file storing the directory of all stored waves.

All significantly different waves encountered in the training process are

; stored in the directory.

i TYPE WAVDIR.NEW is a PDP-11 System Library file of binary data currently
limited to 600 blocks in length. Each waveform occupies 6 blocks or 1536
words,

CONTENTS

Each waveform record consists of

P

SLNGTH - number of triples specifying wave
DECAY - integer value typifying overall decay in level values over

duration of wave
STWAV(512,3) - array of triples specifying triples wave store:
o new height if form a rise or fall or zero if level
o decay time if rise or fall or magnitude of level

/ o duration of form

i 130

DPO:SIGDAT. NEW
DESCRIPTION SIGDAT.NEW is the file containing waveform data of known events
that are to be used to train the waveform feature transition graph and build
the waveform directory.
TYPE SIGDAT.NEW is a FORTRAN unformatted binary file.
CONTENTS The first logical record on SIGDAT.NEW consists of one integer
value, TIMES, equal to the number of remaining logical records on file. The
remaining logical records have the form
EVNTID, NFORMS (MLAS(I,J), J = 1, 3) I = 1, NFORMS)
where
EVNTID is the identification number of the event depicted by the wave
NFORMS is the number of triple waveforms constituting the wave

MLAS is the array of waveform triples in the wave

131

WAVAN LINKING PROCEDURE
Figure 23 contains the PDP 11/45 command to link WAVAN.

RUN LINK
DPO: VARY=DPO;VARY, OTHERS, SETLB2, GIRSZ, SYSLIB/F/C

DPO:ANAAAA/0:1/C
DPO:UPTTTT/0: 1

Figure 23 - WAVAN Linking Procedure

REFERENCES
1. Parsons, W. et al, "Interactive Signal and Pattern Analysis and

Recognition System (ISPARS). Users Guide," DTNSRDC Report (in process of
being published).

2. Sanyal, P. K. et al, "The Waveform Processing System (WPS)," Rome Air
Development Center Technical Report TR-76-224, Vol. I (Oct 1976), Vol. II (Sep
* . 1976, Vol. III (July 1976), Vol. IV (Feb 1977).

3. Sammon, J. W., "The On-Line Pattern Analysis and Recognition
System--OLPARS," Rome Air Development Center Technical Report TR-68-263 (1968).

4, Zaritsky, I., "GIRS (Graph Information Retrieval System) Users
Manual," DTNSRDC Report 79/036 (April 1979).

5. Berkowitz, S., "Graph Information Retrieval Language; Programming
Manual for FORTRAN Complement; Revision One," DTNSRDC Report 76-0085 (Feb
1976).

N~

x

- <. .- ,.
- A et e mn At o en e m o Bae o A e o~ -

~..

e e D

o

133

L ——

Copies

12

Copies
1
1
2

INITIAL DISTRIBUTION

CNR
NRL
NUSC
DTIC

CENTER DISTRIBUTION

Code Name

18 G. Gleissner
1805 E. Cuthill
1808 D. Wildy

182 A. Camara
1824 S. Berkowitz
1828 J. Garner
184 J. Schot

185 T. Corin

187 M. Zubkoff
189 G. Gray

522,1 TIC (C)
522.2 TIC (A)

93 L. Marsh

134

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
. TERNAL USE. THEY CARRY AN IDENTLFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
: NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE

BASIS.

e

. - -
e —————— A e o BB B e e

